Files
agdaproofs/Fields/CauchyCompletion/Multiplication.agda
2019-10-27 22:55:27 +00:00

118 lines
11 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K --guardedness #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Setoids.Setoids
open import Rings.Definition
open import Rings.Lemmas
open import Rings.Order
open import Groups.Definition
open import Groups.Groups
open import Fields.Fields
open import Sets.EquivalenceRelations
open import Sequences
open import Setoids.Orders
open import Functions
open import LogicalFormulae
open import Numbers.Naturals.Naturals
module Fields.CauchyCompletion.Multiplication {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A A A} {_*_ : A A A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {tOrder : SetoidTotalOrder {_<_ = _<_} pOrder} {R : Ring S _+_ _*_} (order : OrderedRing R tOrder) (F : Field R) (charNot2 : Setoid.__ S ((Ring.1R R) + (Ring.1R R)) (Ring.0R R) False) where
open Setoid S
open SetoidTotalOrder tOrder
open SetoidPartialOrder pOrder
open Equivalence eq
open OrderedRing order
open Ring R
open Group additiveGroup
open Field F
open import Rings.Orders.Lemmas(order)
open import Fields.CauchyCompletion.Definition order F
open import Fields.CauchyCompletion.Setoid order F charNot2
open import Fields.CauchyCompletion.Comparison order F charNot2
open import Fields.CauchyCompletion.Addition order F charNot2
open import Fields.CauchyCompletion.Approximation order F charNot2
_*C_ : CauchyCompletion CauchyCompletion CauchyCompletion
CauchyCompletion.elts (record { elts = a ; converges = aConv } *C record { elts = b ; converges = bConv }) = apply _*_ a b
CauchyCompletion.converges (record { elts = a ; converges = aConv } *C record { elts = b ; converges = bConv }) ε 0<e = {!!}
*CCommutative : {a b : CauchyCompletion} Setoid.__ cauchyCompletionSetoid (a *C b) (b *C a)
*CCommutative {a} {b} ε 0<e = 0 , ans
where
foo : {x y : A} (x * y) + inverse (y * x) 0G
foo = Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) (inverseWellDefined additiveGroup *Commutative)) invRight
ans : {m : } 0 <N m abs (index (apply _+_ (CauchyCompletion.elts (a *C b)) (map inverse (CauchyCompletion.elts (b *C a)))) m) < ε
ans {m} 0<m rewrite indexAndApply (apply _*_ (CauchyCompletion.elts a) (CauchyCompletion.elts b)) (map inverse (apply _*_ (CauchyCompletion.elts b) (CauchyCompletion.elts a))) _+_ {m} | indexAndApply (CauchyCompletion.elts a) (CauchyCompletion.elts b) _*_ {m} | equalityCommutative (mapAndIndex (apply _*_ (CauchyCompletion.elts b) (CauchyCompletion.elts a)) inverse m) | indexAndApply (CauchyCompletion.elts b) (CauchyCompletion.elts a) _*_ {m} = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (absWellDefined _ _ foo) (identityOfIndiscernablesRight __ (Equivalence.reflexive eq) (absZero order)))) (Equivalence.reflexive eq) 0<e
absBoundedImpliesBounded : {a b : A} abs a < b a < b
absBoundedImpliesBounded {a} {b} a<b with SetoidTotalOrder.totality tOrder 0G a
absBoundedImpliesBounded {a} {b} a<b | inl (inl x) = a<b
absBoundedImpliesBounded {a} {b} a<b | inl (inr x) = SetoidPartialOrder.transitive pOrder x (SetoidPartialOrder.transitive pOrder (lemm2 a x) a<b)
absBoundedImpliesBounded {a} {b} a<b | inr x = a<b
multiplicationWellDefinedLeft' : (0!=1 : 0R 1R False) (a b c : CauchyCompletion) Setoid.__ cauchyCompletionSetoid a b Setoid.__ cauchyCompletionSetoid (a *C c) (b *C c)
multiplicationWellDefinedLeft' 0!=1 a b c a=b ε 0<e = N , ans
where
cBound : A
cBound = ?
0<cBound : 0G < cBound
0<cBound = {!!}
e/c : A
e/c with allInvertible cBound (λ pr irreflexive (<WellDefined (Equivalence.reflexive eq) pr 0<cBound))
... | (1/c , _) = ε * 1/c
e/cPr : e/c * cBound ε
e/cPr with allInvertible cBound (λ pr irreflexive (<WellDefined (Equivalence.reflexive eq) pr 0<cBound))
... | (1/c , pr) = Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq *Associative) (*WellDefined (Equivalence.reflexive eq) pr)) *Commutative) (identIsIdent)
0<e/c : 0G < e/c
0<e/c = ringCanCancelPositive {0G} {e/c} 0<cBound (<WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq *Commutative timesZero)) (Equivalence.symmetric eq e/cPr) 0<e)
abBound :
abBound with a=b e/c 0<e/c
... | Na=b , _ = Na=b
abPr : {m : } (abBound <N m) abs (index (apply _+_ (CauchyCompletion.elts a) (map inverse (CauchyCompletion.elts b))) m) < e/c
abPr with a=b e/c 0<e/c
... | Na=b , pr = pr
N :
N = abBound +N {!!}
cBounded : (m : ) (N <N m) abs (index (CauchyCompletion.elts c) m) < cBound
cBounded m N<m = {!SetoidPartialOrder.transitive pOrder !}
a-bSmall : (m : ) N <N m abs ((index (CauchyCompletion.elts a) m) + inverse (index (CauchyCompletion.elts b) m)) < e/c
a-bSmall m N<m with abPr {m} (inequalityShrinkLeft N<m)
... | f rewrite indexAndApply (CauchyCompletion.elts a) (map inverse (CauchyCompletion.elts b)) _+_ {m} | equalityCommutative (mapAndIndex (CauchyCompletion.elts b) inverse m) = f
ans : {m : } N <N m abs (index (apply _+_ (apply _*_ (CauchyCompletion.elts a) (CauchyCompletion.elts c)) (map inverse (apply _*_ (CauchyCompletion.elts b) (CauchyCompletion.elts c)))) m) < ε
ans {m} N<m rewrite indexAndApply (apply _*_ (CauchyCompletion.elts a) (CauchyCompletion.elts c)) (map inverse (apply _*_ (CauchyCompletion.elts b) (CauchyCompletion.elts c))) _+_ {m} | equalityCommutative (mapAndIndex (apply _*_ (CauchyCompletion.elts b) (CauchyCompletion.elts c)) inverse m) | indexAndApply (CauchyCompletion.elts b) (CauchyCompletion.elts c) _*_ {m} | indexAndApply (CauchyCompletion.elts a) (CauchyCompletion.elts c) _*_ {m} = <WellDefined (absWellDefined _ _ (+WellDefined (Equivalence.reflexive eq) (ringMinusExtracts' R))) (Equivalence.reflexive eq) (<WellDefined (absWellDefined ((index (CauchyCompletion.elts a) m + inverse (index (CauchyCompletion.elts b) m)) * index (CauchyCompletion.elts c) m) _ (Equivalence.transitive eq (Equivalence.transitive eq *Commutative *DistributesOver+) (+WellDefined *Commutative *Commutative))) (Equivalence.reflexive eq) (<WellDefined (Equivalence.symmetric eq (absRespectsTimes _ _)) (Equivalence.reflexive eq) (<WellDefined (Equivalence.reflexive eq) e/cPr (ans' (index (CauchyCompletion.elts a) m) (index (CauchyCompletion.elts b) m) (index (CauchyCompletion.elts c) m) (a-bSmall m N<m) (cBounded m N<m)))))
where
ans' : (a b c : A) abs (a + inverse b) < e/c abs c < cBound (abs (a + inverse b) * abs c) < (e/c * cBound)
ans' a b c a-b<e/c c<bound with SetoidTotalOrder.totality tOrder 0R c
ans' a b c a-b<e/c c<bound | inl (inl 0<c) with totality 0G (a + inverse b)
ans' a b c a-b<e/c c<bound | inl (inl 0<c) | inl (inl 0<a-b) = ringMultiplyPositives 0<a-b 0<c a-b<e/c c<bound
ans' a b c a-b<e/c c<bound | inl (inl 0<c) | inl (inr a-b<0) = ringMultiplyPositives (lemm2 (a + inverse b) a-b<0) 0<c a-b<e/c c<bound
ans' a b c a-b<e/c c<bound | inl (inl 0<c) | inr 0=a-b = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq 0=a-b) (Equivalence.reflexive eq)) (Equivalence.transitive eq *Commutative timesZero))) (Equivalence.reflexive eq) (orderRespectsMultiplication 0<e/c 0<cBound)
ans' a b c a-b<e/c c<bound | inl (inr c<0) with totality 0G (a + inverse b)
ans' a b c a-b<e/c c<bound | inl (inr c<0) | inl (inl 0<a-b) = ringMultiplyPositives 0<a-b (lemm2 c c<0) a-b<e/c c<bound
ans' a b c a-b<e/c c<bound | inl (inr c<0) | inl (inr a-b<0) = ringMultiplyPositives (lemm2 (a + inverse b) a-b<0) (lemm2 c c<0) a-b<e/c c<bound
ans' a b c a-b<e/c c<bound | inl (inr c<0) | inr 0=a-b = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq 0=a-b) (Equivalence.reflexive eq)) (Equivalence.transitive eq *Commutative timesZero))) (Equivalence.reflexive eq) (orderRespectsMultiplication 0<e/c 0<cBound)
ans' a b c a-b<e/c c<bound | inr 0=c = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=c)) timesZero)) (Equivalence.reflexive eq) (orderRespectsMultiplication 0<e/c 0<cBound)
multiplicationWellDefinedLeft : (a b c : CauchyCompletion) Setoid.__ cauchyCompletionSetoid a b Setoid.__ cauchyCompletionSetoid (a *C c) (b *C c)
multiplicationWellDefinedLeft with SetoidTotalOrder.totality tOrder 0R 1R
... | inl (inl 0<1') = multiplicationWellDefinedLeft' (λ pr irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq pr) 0<1'))
... | inl (inr 1<0) = multiplicationWellDefinedLeft' (λ pr irreflexive {0G} (<WellDefined (Equivalence.symmetric eq pr) (Equivalence.reflexive eq) 1<0))
... | inr (0=1) = λ a b c a=b Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {a *C c} {injection 0G} {b *C c} (Equivalence.symmetric (Setoid.eq cauchyCompletionSetoid) {injection 0G} {a *C c} (trivialIfInputTrivial 0=1 (a *C c))) (trivialIfInputTrivial 0=1 (b *C c))
multiplicationPreservedLeft : {a b : A} {c : CauchyCompletion} (a b) Setoid.__ cauchyCompletionSetoid (injection a *C c) (injection b *C c)
multiplicationPreservedLeft {a} {b} {c} a=b = multiplicationWellDefinedLeft (injection a) (injection b) c (injectionPreservesSetoid a b a=b)
multiplicationPreservedRight : {a b : A} {c : CauchyCompletion} (a b) Setoid.__ cauchyCompletionSetoid (c *C injection a) (c *C injection b)
multiplicationPreservedRight {a} {b} {c} a=b = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {c *C injection a} {injection a *C c} {c *C injection b} (*CCommutative {c} {injection a}) (Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {injection a *C c} {injection b *C c} {c *C injection b} (multiplicationPreservedLeft {a} {b} {c} a=b) (*CCommutative {injection b} {c}))
multiplicationPreserved : {a b c d : A} (a b) (c d) Setoid.__ cauchyCompletionSetoid (injection a *C injection c) (injection b *C injection d)
multiplicationPreserved {a} {b} {c} {d} a=b c=d = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {injection a *C injection c} {injection a *C injection d} {injection b *C injection d} (multiplicationPreservedRight {c} {d} {injection a} c=d) (multiplicationPreservedLeft {a} {b} {injection d} a=b)
multiplicationWellDefinedRight : (a b c : CauchyCompletion) Setoid.__ cauchyCompletionSetoid b c Setoid.__ cauchyCompletionSetoid (a *C b) (a *C c)
multiplicationWellDefinedRight a b c b=c = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {a *C b} {b *C a} {a *C c} (*CCommutative {a} {b}) (Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {b *C a} {c *C a} {a *C c} (multiplicationWellDefinedLeft b c a b=c) (*CCommutative {c} {a}))
multiplicationWellDefined : {a b c d : CauchyCompletion} Setoid.__ cauchyCompletionSetoid a b Setoid.__ cauchyCompletionSetoid c d Setoid.__ cauchyCompletionSetoid (a *C c) (b *C d)
multiplicationWellDefined {a} {b} {c} {d} a=b c=d = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {a *C c} {a *C d} {b *C d} (multiplicationWellDefinedRight a c d c=d) (multiplicationWellDefinedLeft a b d a=b)