Files
agdaproofs/Groups/Homomorphisms/Image.agda
2019-11-08 18:00:16 +00:00

65 lines
4.8 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import Groups.Groups
open import Groups.Definition
open import Orders
open import Numbers.Integers.Integers
open import Setoids.Setoids
open import LogicalFormulae
open import Sets.FinSet
open import Functions
open import Sets.EquivalenceRelations
open import Numbers.Naturals.Naturals
open import Groups.Homomorphisms.Definition
open import Groups.Homomorphisms.Lemmas
open import Groups.Isomorphisms.Definition
open import Groups.Subgroups.Definition
open import Groups.Lemmas
open import Groups.Abelian.Definition
open import Groups.QuotientGroup.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Groups.Homomorphisms.Image where
data GroupHomImageElement {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+A_ : A A A} {_+B_ : B B B} {G : Group S _+A_} {H : Group T _+B_} {f : A B} (fHom : GroupHom G H f) : Set (a b c d) where
ofElt : (x : A) GroupHomImageElement fHom
imageGroupSetoid : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+A_ : A A A} {_+B_ : B B B} {G : Group S _+A_} {H : Group T _+B_} {f : A B} (fHom : GroupHom G H f) Setoid (GroupHomImageElement fHom)
(imageGroupSetoid {T = T} {f = f} fHom Setoid. ofElt b1) (ofElt b2) = Setoid.__ T (f b1) (f b2)
Equivalence.reflexive (Setoid.eq (imageGroupSetoid {T = T} fHom)) {ofElt b1} = Equivalence.reflexive (Setoid.eq T)
Equivalence.symmetric (Setoid.eq (imageGroupSetoid {T = T} fHom)) {ofElt b1} {ofElt b2} = Equivalence.symmetric (Setoid.eq T)
Equivalence.transitive (Setoid.eq (imageGroupSetoid {T = T} fHom)) {ofElt b1} {ofElt b2} {ofElt b3} = Equivalence.transitive (Setoid.eq T)
imageGroupOp : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+A_ : A A A} {_+B_ : B B B} {G : Group S _+A_} {H : Group T _+B_} {f : A B} (fHom : GroupHom G H f) GroupHomImageElement fHom GroupHomImageElement fHom GroupHomImageElement fHom
imageGroupOp {_+A_ = _+A_} fHom (ofElt a) (ofElt b) = ofElt (a +A b)
imageGroup : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+A_ : A A A} {_+B_ : B B B} {G : Group S _+A_} {H : Group T _+B_} {f : A B} (fHom : GroupHom G H f) Group (imageGroupSetoid fHom) (imageGroupOp fHom)
Group.+WellDefined (imageGroup {T = T} {_+A_ = _+A_} {H = H} {f = f} fHom) {ofElt x} {ofElt y} {ofElt a} {ofElt b} x~a y~b = ans
where
open Setoid T
open Equivalence eq
ans : f (x +A y) f (a +A b)
ans = transitive (GroupHom.groupHom fHom) (transitive (Group.+WellDefined H x~a y~b) (symmetric (GroupHom.groupHom fHom)))
Group.0G (imageGroup {G = G} fHom) = ofElt (Group.0G G)
Group.inverse (imageGroup {G = G} fHom) (ofElt a) = ofElt (Group.inverse G a)
Group.+Associative (imageGroup {G = G} fHom) {ofElt a} {ofElt b} {ofElt c} = GroupHom.wellDefined fHom (Group.+Associative G)
Group.identRight (imageGroup {G = G} fHom) {ofElt a} = GroupHom.wellDefined fHom (Group.identRight G)
Group.identLeft (imageGroup {G = G} fHom) {ofElt a} = GroupHom.wellDefined fHom (Group.identLeft G)
Group.invLeft (imageGroup {G = G} fHom) {ofElt a} = GroupHom.wellDefined fHom (Group.invLeft G)
Group.invRight (imageGroup {G = G} fHom) {ofElt a} = GroupHom.wellDefined fHom (Group.invRight G)
groupHomImageInclusion : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+G_ : A A A} {_+H_ : B B B} {G : Group S _+G_} {H : Group T _+H_} {f : A B} (fHom : GroupHom G H f) GroupHomImageElement fHom B
groupHomImageInclusion {f = f} fHom (ofElt x) = f x
groupHomImageIncludes : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+G_ : A A A} {_+H_ : B B B} {G : Group S _+G_} {H : Group T _+H_} {f : A B} (fHom : GroupHom G H f) GroupHom (imageGroup fHom) H (groupHomImageInclusion fHom)
GroupHom.groupHom (groupHomImageIncludes fHom) {ofElt x} {ofElt y} = GroupHom.groupHom fHom
GroupHom.wellDefined (groupHomImageIncludes fHom) {ofElt x} {ofElt y} x~y = x~y
groupHomImageIsSubgroup : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+G_ : A A A} {_+H_ : B B B} {G : Group S _+G_} {H : Group T _+H_} {f : A B} (fHom : GroupHom G H f) Subgroup H (imageGroup fHom) (groupHomImageIncludes fHom)
Subgroup.fInj (groupHomImageIsSubgroup {S = S} {T} {_+G_} {_+H_} {G} {H} {f} fHom) = record { wellDefined = λ {x} {y} GroupHom.wellDefined (groupHomImageIncludes fHom) {x} {y} ; injective = λ {x} {y} inj {x} {y} }
where
inj : {x y : GroupHomImageElement fHom} (Setoid.__ T (groupHomImageInclusion fHom x) (groupHomImageInclusion fHom y)) Setoid.__ (imageGroupSetoid fHom) x y
inj {ofElt x} {ofElt y} x~y = x~y