Files
agdaproofs/Numbers/Modulo/ZModule.agda
2020-03-28 21:34:14 +00:00

45 lines
2.3 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Definition
open import Groups.Abelian.Definition
open import Groups.FiniteGroups.Definition
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Numbers.Naturals.Order.Lemmas
open import Setoids.Setoids
open import Sets.FinSet.Definition
open import Sets.FinSet.Lemmas
open import Functions
open import Semirings.Definition
open import Numbers.Modulo.Definition
open import Numbers.Modulo.Addition
open import Orders.Total.Definition
open import Numbers.Modulo.ModuloFunction
open import Numbers.Integers.Definition
open import Numbers.Modulo.Group
open import Modules.Definition
open import Numbers.Integers.RingStructure.Ring
module Numbers.Modulo.ZModule {n : } (pr : 0 <N n) where
timesNat : n n pr n n pr
timesNat 0 b = record { x = 0 ; xLess = pr }
timesNat (succ x) b = _+n_ pr b (timesNat x b)
times : n n pr n n pr
times (nonneg x) b = timesNat x b
times (negSucc x) b = Group.inverse (nGroup n pr) (timesNat (succ x) b)
dotDistributesLeft : (r : ) (x y : n n pr) times r ((_ +n x) y) (_ +n times r x) (times r y)
dotDistributesLeft (nonneg zero) x y = equalityCommutative (Group.identRight (nGroup n pr))
dotDistributesLeft (nonneg (succ r)) x y rewrite dotDistributesLeft (nonneg r) x y = equalityZn (transitivity (equalityCommutative (modExtracts pr _ _)) (transitivity (applyEquality (mod n pr) (transitivity (transitivity (equalityCommutative (Semiring.+Associative Semiring (n.x x) _ _)) (applyEquality (n.x x +N_) (transitivity (Semiring.commutative Semiring (n.x y) _) (transitivity (equalityCommutative (Semiring.+Associative Semiring _ (n.x (timesNat r y)) (n.x y))) (applyEquality (n.x (timesNat r x) +N_) (Semiring.commutative Semiring (n.x (timesNat r y)) (n.x y))))))) (Semiring.+Associative Semiring (n.x x) _ _))) (modExtracts pr _ _)))
dotDistributesLeft (negSucc r) x y = {!!}
ZnZModule : Module Ring (nAbGroup n pr) times
Module.dotWellDefined (ZnZModule) refl refl = refl
Module.dotDistributesLeft (ZnZModule) {r} {x} {y} = dotDistributesLeft r x y
Module.dotDistributesRight (ZnZModule) = {!!}
Module.dotAssociative (ZnZModule) = {!!}
Module.dotIdentity (ZnZModule) {record { x = x ; xLess = xLess }} = {!!}