Files
agdaproofs/Groups/Examples/ExampleSheet1.agda
2019-11-03 17:12:48 +00:00

234 lines
24 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Functions
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Naturals
open import Numbers.Integers.Integers
open import Sets.FinSet
open import Groups.Definition
open import Groups.Homomorphisms.Definition
open import Groups.Homomorphisms.Lemmas
open import Groups.Isomorphisms.Definition
open import Groups.Abelian.Definition
open import Groups.Subgroups.Definition
open import Groups.Lemmas
open import Groups.Groups
open import Rings.Definition
open import Rings.Lemmas
open import Fields.Fields
open import Sets.EquivalenceRelations
module Groups.Examples.ExampleSheet1 where
{-
Question 1: e is the unique solution of x^2 = x
-}
question1 : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} (G : Group S _+_) (x : A) Setoid.__ S (x + x) x Setoid.__ S x (Group.0G G)
question1 {S = S} {_+_ = _+_} G x x+x=x = transitive (symmetric identRight) (transitive (+WellDefined reflexive (symmetric invRight)) (transitive +Associative (transitive (+WellDefined x+x=x reflexive) invRight)))
where
open Group G
open Setoid S
open Equivalence eq
question1' : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} (G : Group S _+_) Setoid.__ S ((Group.0G G) + (Group.0G G)) (Group.0G G)
question1' G = Group.identRight G
{-
Question 2: intersection of subgroups is a subgroup; union of subgroups is a subgroup iff one is contained in the other.
First, define the intersection of subgroups and show that it is a subgroup.
-}
data SubgroupIntersectionElement {a b c d e f : _} {A : Set a} {B : Set b} {C : Set c} {S : Setoid {a} {d} A} {T : Setoid {b} {e} B} {U : Setoid {c} {f} C} {_+_ : A A A} {_+H1_ : B B B} {_+H2_ : C C C} (G : Group S _+_) {H1grp : Group T _+H1_} {H2grp : Group U _+H2_} {h1Inj : B A} {h2Inj : C A} {h1Hom : GroupHom H1grp G h1Inj} {h2Hom : GroupHom H2grp G h2Inj} (H1 : Subgroup G H1grp h1Hom) (H2 : Subgroup G H2grp h2Hom) : Set (a b c d e f) where
ofElt : {x : A} Sg B (λ b Setoid.__ S (h1Inj b) x) Sg C (λ c Setoid.__ S (h2Inj c) x) SubgroupIntersectionElement G H1 H2
subgroupIntersectionOp : {a b c d e f : _} {A : Set a} {B : Set b} {C : Set c} {S : Setoid {a} {d} A} {T : Setoid {b} {e} B} {U : Setoid {c} {f} C} {_+_ : A A A} {_+H1_ : B B B} {_+H2_ : C C C} (G : Group S _+_) {H1grp : Group T _+H1_} {H2grp : Group U _+H2_} {h1Inj : B A} {h2Inj : C A} {h1Hom : GroupHom H1grp G h1Inj} {h2Hom : GroupHom H2grp G h2Inj} (H1 : Subgroup G H1grp h1Hom) (H2 : Subgroup G H2grp h2Hom) (r : SubgroupIntersectionElement G H1 H2) (s : SubgroupIntersectionElement G H1 H2) SubgroupIntersectionElement G H1 H2
subgroupIntersectionOp {S = S} {_+_ = _+_} {_+H1_ = _+H1_} {_+H2_ = _+H2_} G {h1Hom = h1Hom} {h2Hom = h2Hom} H1 H2 (ofElt (b , prB) (c , prC)) (ofElt (b2 , prB2) (c2 , prC2)) = ofElt ((b +H1 b2) , GroupHom.groupHom h1Hom) ((c +H2 c2) , transitive (GroupHom.groupHom h2Hom) (transitive (Group.+WellDefined G prC prC2) (Group.+WellDefined G (symmetric prB) (symmetric prB2))))
where
open Setoid S
open Equivalence eq
subgroupIntersectionSetoid : {a b c d e f : _} {A : Set a} {B : Set b} {C : Set c} {S : Setoid {a} {d} A} {T : Setoid {b} {e} B} {U : Setoid {c} {f} C} {_+_ : A A A} {_+H1_ : B B B} {_+H2_ : C C C} (G : Group S _+_) {H1grp : Group T _+H1_} {H2grp : Group U _+H2_} {h1Inj : B A} {h2Inj : C A} {h1Hom : GroupHom H1grp G h1Inj} {h2Hom : GroupHom H2grp G h2Inj} (H1 : Subgroup G H1grp h1Hom) (H2 : Subgroup G H2grp h2Hom) Setoid (SubgroupIntersectionElement G H1 H2)
Setoid.__ (subgroupIntersectionSetoid {T = T} {U = U} G {h1Inj = h1} {h2Inj = h2} H1 H2) (ofElt (xH1 , prxH1) (xH2 , prxH2)) (ofElt (yH1 , pryH1) (yH2 , pryH2)) = (Setoid.__ T xH1 yH1) && (Setoid.__ U xH2 yH2)
Equivalence.reflexive (Setoid.eq (subgroupIntersectionSetoid {T = T} {U = U} G H1 H2)) {ofElt (a , prA) (b , prB)} = (Equivalence.reflexive (Setoid.eq T)) ,, (Equivalence.reflexive (Setoid.eq U))
Equivalence.symmetric (Setoid.eq (subgroupIntersectionSetoid {T = T} {U = U} G H1 H2)) {ofElt (a , prA) (b , prB)} {ofElt (c , prC) (d , prD)} (fst ,, snd) = Equivalence.symmetric (Setoid.eq T) fst ,, Equivalence.symmetric (Setoid.eq U) snd
Equivalence.transitive (Setoid.eq (subgroupIntersectionSetoid {T = T} {U = U} G H1 H2)) {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} (fst1 ,, snd1) (fst2 ,, snd2) = Equivalence.transitive (Setoid.eq T) fst1 fst2 ,, Equivalence.transitive (Setoid.eq U) snd1 snd2
subgroupIntersectionGroup : {a b c d e f : _} {A : Set a} {B : Set b} {C : Set c} {S : Setoid {a} {d} A} {T : Setoid {b} {e} B} {U : Setoid {c} {f} C} {_+_ : A A A} {_+H1_ : B B B} {_+H2_ : C C C} (G : Group S _+_) {H1grp : Group T _+H1_} {H2grp : Group U _+H2_} {h1Inj : B A} {h2Inj : C A} {h1Hom : GroupHom H1grp G h1Inj} {h2Hom : GroupHom H2grp G h2Inj} (H1 : Subgroup G H1grp h1Hom) (H2 : Subgroup G H2grp h2Hom) Group (subgroupIntersectionSetoid G H1 H2) (subgroupIntersectionOp G H1 H2)
Group.+WellDefined (subgroupIntersectionGroup {S = S} {T = T} {U = U} G {H1grp = h1} {H2grp = h2} H1 H2) {ofElt (_ , _) (_ , _)} {ofElt (_ , _ ) (_ , _)} {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} (pr1 ,, pr2) (pr3 ,, pr4) = transitiveT (Group.+WellDefined h1 pr1 reflexiveT) (Group.+WellDefined h1 reflexiveT pr3) ,, transitiveU (Group.+WellDefined h2 pr2 reflexiveU) ((Group.+WellDefined h2 reflexiveU pr4))
where
open Group G
open Setoid T
open Equivalence (Setoid.eq T) renaming (transitive to transitiveT ; symmetric to symmetricT ; reflexive to reflexiveT)
open Equivalence (Setoid.eq U) renaming (transitive to transitiveU ; symmetric to symmetricU ; reflexive to reflexiveU)
Group.0G (subgroupIntersectionGroup G {H1grp = H1grp} {H2grp = H2grp} {h1Hom = h1Hom} {h2Hom = h2Hom} H1 H2) = ofElt {x = Group.0G G} (Group.0G H1grp , imageOfIdentityIsIdentity h1Hom) (Group.0G H2grp , imageOfIdentityIsIdentity h2Hom)
Group.inverse (subgroupIntersectionGroup {S = S} G {H1grp = h1} {H2grp = h2} {h1Hom = h1hom} {h2Hom = h2hom} H1 H2) (ofElt (a , prA) (b , prB)) = ofElt (Group.inverse h1 a , homRespectsInverse h1hom) (Group.inverse h2 b , transitive (homRespectsInverse h2hom) (inverseWellDefined G (transitive prB (symmetric prA))))
where
open Setoid S
open Equivalence eq
Group.+Associative (subgroupIntersectionGroup G {H1grp = h1} {H2grp = h2} H1 H2) {ofElt (a , prA) (b , prB)} {ofElt (c , prC) (d , prD)} {ofElt (e , prE) (f , prF)} = Group.+Associative h1 ,, Group.+Associative h2
Group.identRight (subgroupIntersectionGroup G {H1grp = h1} {H2grp = h2} H1 H2) {ofElt (_ , _) (_ , _)} = Group.identRight h1 ,, Group.identRight h2
Group.identLeft (subgroupIntersectionGroup G {H1grp = h1} {H2grp = h2} H1 H2) {ofElt (_ , _) (_ , _)} = Group.identLeft h1 ,, Group.identLeft h2
Group.invLeft (subgroupIntersectionGroup G {H1grp = h1} {H2grp = h2} H1 H2) {ofElt (_ , _) (_ , _)} = Group.invLeft h1 ,, Group.invLeft h2
Group.invRight (subgroupIntersectionGroup G {H1grp = h1} {H2grp = h2} H1 H2) {ofElt (_ , _) (_ , _)} = Group.invRight h1 ,, Group.invRight h2
subgroupIntersectionInjectionIntoMain : {a b c d e f : _} {A : Set a} {B : Set b} {C : Set c} {S : Setoid {a} {d} A} {T : Setoid {b} {e} B} {U : Setoid {c} {f} C} {_+_ : A A A} {_+H1_ : B B B} {_+H2_ : C C C} (G : Group S _+_) {H1grp : Group T _+H1_} {H2grp : Group U _+H2_} {h1Inj : B A} {h2Inj : C A} {h1Hom : GroupHom H1grp G h1Inj} {h2Hom : GroupHom H2grp G h2Inj} (H1 : Subgroup G H1grp h1Hom) (H2 : Subgroup G H2grp h2Hom) SubgroupIntersectionElement G H1 H2 A
subgroupIntersectionInjectionIntoMain G {h1Inj = f} H1 H2 (ofElt (a , prA) (b , prB)) = f a
subgroupIntersectionInjectionIntoMainIsHom : {a b c d e f : _} {A : Set a} {B : Set b} {C : Set c} {S : Setoid {a} {d} A} {T : Setoid {b} {e} B} {U : Setoid {c} {f} C} {_+_ : A A A} {_+H1_ : B B B} {_+H2_ : C C C} (G : Group S _+_) {H1grp : Group T _+H1_} {H2grp : Group U _+H2_} {h1Inj : B A} {h2Inj : C A} {h1Hom : GroupHom H1grp G h1Inj} {h2Hom : GroupHom H2grp G h2Inj} (H1 : Subgroup G H1grp h1Hom) (H2 : Subgroup G H2grp h2Hom) GroupHom (subgroupIntersectionGroup G H1 H2) G (subgroupIntersectionInjectionIntoMain G H1 H2)
GroupHom.groupHom (subgroupIntersectionInjectionIntoMainIsHom G {h1Hom = h1} H1 H2) {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} = GroupHom.groupHom h1
GroupHom.wellDefined (subgroupIntersectionInjectionIntoMainIsHom G {h1Hom = h1} H1 H2) {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} (fst ,, snd) = GroupHom.wellDefined h1 fst
subgroupIntersectionIsSubgroup : {a b c d e f : _} {A : Set a} {B : Set b} {C : Set c} {S : Setoid {a} {d} A} {T : Setoid {b} {e} B} {U : Setoid {c} {f} C} {_+_ : A A A} {_+H1_ : B B B} {_+H2_ : C C C} (G : Group S _+_) {H1grp : Group T _+H1_} {H2grp : Group U _+H2_} {h1Inj : B A} {h2Inj : C A} {h1Hom : GroupHom H1grp G h1Inj} {h2Hom : GroupHom H2grp G h2Inj} (H1 : Subgroup G H1grp h1Hom) (H2 : Subgroup G H2grp h2Hom) Subgroup G (subgroupIntersectionGroup G H1 H2) (subgroupIntersectionInjectionIntoMainIsHom G H1 H2)
SetoidInjection.wellDefined (Subgroup.fInj (subgroupIntersectionIsSubgroup G {h1Hom = h1} H1 H2)) {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} (fst ,, snd) = GroupHom.wellDefined h1 fst
SetoidInjection.injective (Subgroup.fInj (subgroupIntersectionIsSubgroup {S = S} G H1 H2)) {ofElt (a , prA) (b , prB)} {ofElt (c , prC) (d , prD)} x~y = SetoidInjection.injective (Subgroup.fInj H1) x~y ,, SetoidInjection.injective (Subgroup.fInj H2) (transitive prB (transitive (transitive (symmetric prA) (transitive x~y prC) ) (symmetric prD)))
where
open Setoid S
open Equivalence eq
{-
To make sure we haven't defined something stupid, check that the intersection doesn't care which order the two subgroups came in, and check that the subgroup intersection is isomorphic to the original group in the case that the two were the same, and check that the intersection injects into the first subgroup.
-}
subgroupIntersectionIsomorphic : {a b c d e f : _} {A : Set a} {B : Set b} {C : Set c} {S : Setoid {a} {d} A} {T : Setoid {b} {e} B} {U : Setoid {c} {f} C} {_+_ : A A A} {_+H1_ : B B B} {_+H2_ : C C C} (G : Group S _+_) {H1grp : Group T _+H1_} {H2grp : Group U _+H2_} {h1Inj : B A} {h2Inj : C A} {h1Hom : GroupHom H1grp G h1Inj} {h2Hom : GroupHom H2grp G h2Inj} (H1 : Subgroup G H1grp h1Hom) (H2 : Subgroup G H2grp h2Hom) GroupsIsomorphic (subgroupIntersectionGroup G H1 H2) (subgroupIntersectionGroup G H2 H1)
GroupsIsomorphic.isomorphism (subgroupIntersectionIsomorphic G H1 H2) (ofElt (a , prA) (b , prB)) = ofElt (b , prB) (a , prA)
GroupHom.groupHom (GroupIso.groupHom (GroupsIsomorphic.proof (subgroupIntersectionIsomorphic {T = T} {U = U} G H1 H2))) {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} = Equivalence.reflexive (Setoid.eq U) ,, Equivalence.reflexive (Setoid.eq T)
GroupHom.wellDefined (GroupIso.groupHom (GroupsIsomorphic.proof (subgroupIntersectionIsomorphic G H1 H2))) {ofElt (a , prA) (b , prB)} {ofElt (_ , _) (_ , _)} (fst ,, snd) = snd ,, fst
SetoidInjection.wellDefined (SetoidBijection.inj (GroupIso.bij (GroupsIsomorphic.proof (subgroupIntersectionIsomorphic G H1 H2)))) {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} (fst ,, snd) = snd ,, fst
SetoidInjection.injective (SetoidBijection.inj (GroupIso.bij (GroupsIsomorphic.proof (subgroupIntersectionIsomorphic G H1 H2)))) {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} (fst ,, snd) = snd ,, fst
SetoidSurjection.wellDefined (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof (subgroupIntersectionIsomorphic G H1 H2)))) {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} (fst ,, snd) = snd ,, fst
SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof (subgroupIntersectionIsomorphic {T = T} {U = U} G H1 H2)))) {ofElt (a , prA) (b , prB)} = ofElt (b , prB) (a , prA) , (Equivalence.reflexive (Setoid.eq U) ,, Equivalence.reflexive (Setoid.eq T))
subgroupIntersectionOfSame : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {_+H1_ : B B B} (G : Group S _+_) {H1grp : Group T _+H1_} {h1Inj : B A} {h1Hom : GroupHom H1grp G h1Inj} (H1 : Subgroup G H1grp h1Hom) GroupsIsomorphic (subgroupIntersectionGroup G H1 H1) H1grp
GroupsIsomorphic.isomorphism (subgroupIntersectionOfSame G H1) (ofElt (a , prA) (b , prB)) = a
GroupHom.groupHom (GroupIso.groupHom (GroupsIsomorphic.proof (subgroupIntersectionOfSame {T = T} G H1))) {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} = Equivalence.reflexive (Setoid.eq T)
GroupHom.wellDefined (GroupIso.groupHom (GroupsIsomorphic.proof (subgroupIntersectionOfSame G H1))) {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} (fst ,, _) = fst
SetoidInjection.wellDefined (SetoidBijection.inj (GroupIso.bij (GroupsIsomorphic.proof (subgroupIntersectionOfSame G H1)))) {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} (fst ,, _) = fst
SetoidInjection.injective (SetoidBijection.inj (GroupIso.bij (GroupsIsomorphic.proof (subgroupIntersectionOfSame {S = S} {T = T} G {h1Hom = h1Hom} H1)))) {ofElt (a , prA) (b , prB)} {ofElt (c , prC) (d , prD)} a~b = a~b ,, SetoidInjection.injective (Subgroup.fInj H1) (transitive prB (transitive (transitive (symmetric prA) (transitive (GroupHom.wellDefined h1Hom a~b) prC)) (symmetric prD)))
where
open Setoid S
open Equivalence eq
SetoidSurjection.wellDefined (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof (subgroupIntersectionOfSame G H1)))) {ofElt (_ , _) (_ , _)} {ofElt (_ , _) (_ , _)} (fst ,, _) = fst
SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof (subgroupIntersectionOfSame {S = S} {T = T} G H1)))) {b} = ofElt (b , Equivalence.reflexive (Setoid.eq S)) (b , Equivalence.reflexive (Setoid.eq S)) , (Equivalence.reflexive (Setoid.eq T))
{- TODO: finish question 2 -}
{-
Question 3. We can't talk about yet, so we'll just work in an arbitrary integral domain.
Show that the collection of linear functions over a ring forms a group; is it abelian?
-}
record LinearFunction {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} (F : Field R) : Set (a b) where
field
xCoeff : A
xCoeffNonzero : (Setoid.__ S xCoeff (Ring.0R R) False)
constant : A
interpretLinearFunction : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} {F : Field R} (f : LinearFunction F) A A
interpretLinearFunction {_+_ = _+_} {_*_ = _*_} record { xCoeff = xCoeff ; xCoeffNonzero = xCoeffNonzero ; constant = constant } a = (xCoeff * a) + constant
composeLinearFunctions : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} {F : Field R} (f1 : LinearFunction F) (f2 : LinearFunction F) LinearFunction F
LinearFunction.xCoeff (composeLinearFunctions {_+_ = _+_} {_*_ = _*_} record { xCoeff = xCoeff1 ; xCoeffNonzero = xCoeffNonzero1 ; constant = constant1 } record { xCoeff = xCoeff2 ; xCoeffNonzero = xCoeffNonzero2 ; constant = constant2 }) = xCoeff1 * xCoeff2
LinearFunction.xCoeffNonzero (composeLinearFunctions {S = S} {R = R} {F = F} record { xCoeff = xCoeff1 ; xCoeffNonzero = xCoeffNonzero1 ; constant = constant1 } record { xCoeff = xCoeff2 ; xCoeffNonzero = xCoeffNonzero2 ; constant = constant2 }) pr = xCoeffNonzero2 bad
where
open Setoid S
open Ring R
open Equivalence eq
bad : Setoid.__ S xCoeff2 0R
bad with Field.allInvertible F xCoeff1 xCoeffNonzero1
... | xinv , pr' = transitive (symmetric identIsIdent) (transitive (*WellDefined (symmetric pr') reflexive) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive pr) (Ring.timesZero R))))
LinearFunction.constant (composeLinearFunctions {_+_ = _+_} {_*_ = _*_} record { xCoeff = xCoeff1 ; xCoeffNonzero = xCoeffNonzero1 ; constant = constant1 } record { xCoeff = xCoeff2 ; xCoeffNonzero = xCoeffNonzero2 ; constant = constant2 }) = (xCoeff1 * constant2) + constant1
compositionIsCorrect : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} {F : Field R} (f1 : LinearFunction F) (f2 : LinearFunction F) {r : A} Setoid.__ S (interpretLinearFunction (composeLinearFunctions f1 f2) r) (((interpretLinearFunction f1) (interpretLinearFunction f2)) r)
compositionIsCorrect {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} record { xCoeff = xCoeff ; xCoeffNonzero = xCoeffNonzero ; constant = constant } record { xCoeff = xCoeff' ; xCoeffNonzero = xCoeffNonzero' ; constant = constant' } {r} = ans
where
open Setoid S
open Ring R
open Equivalence eq
ans : (((xCoeff * xCoeff') * r) + ((xCoeff * constant') + constant)) (xCoeff * ((xCoeff' * r) + constant')) + constant
ans = transitive (Group.+Associative additiveGroup) (Group.+WellDefined additiveGroup (transitive (Group.+WellDefined additiveGroup (symmetric (Ring.*Associative R)) reflexive) (symmetric (Ring.*DistributesOver+ R))) (reflexive {constant}))
linearFunctionsSetoid : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} (I : Field R) Setoid (LinearFunction I)
Setoid.__ (linearFunctionsSetoid {S = S} I) f1 f2 = ((LinearFunction.xCoeff f1) (LinearFunction.xCoeff f2)) && ((LinearFunction.constant f1) (LinearFunction.constant f2))
where
open Setoid S
Equivalence.reflexive (Setoid.eq (linearFunctionsSetoid {S = S} I)) = Equivalence.reflexive (Setoid.eq S) ,, Equivalence.reflexive (Setoid.eq S)
Equivalence.symmetric (Setoid.eq (linearFunctionsSetoid {S = S} I)) (fst ,, snd) = Equivalence.symmetric (Setoid.eq S) fst ,, Equivalence.symmetric (Setoid.eq S) snd
Equivalence.transitive (Setoid.eq (linearFunctionsSetoid {S = S} I)) (fst1 ,, snd1) (fst2 ,, snd2) = Equivalence.transitive (Setoid.eq S) fst1 fst2 ,, Equivalence.transitive (Setoid.eq S) snd1 snd2
linearFunctionsGroup : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} (F : Field R) Group (linearFunctionsSetoid F) (composeLinearFunctions)
Group.+WellDefined (linearFunctionsGroup {R = R} F) {record { xCoeff = xCoeffM ; xCoeffNonzero = xCoeffNonzeroM ; constant = constantM }} {record { xCoeff = xCoeffN ; xCoeffNonzero = xCoeffNonzeroN ; constant = constantN }} {record { xCoeff = xCoeffX ; xCoeffNonzero = xCoeffNonzeroX ; constant = constantX }} {record { xCoeff = xCoeff ; xCoeffNonzero = xCoeffNonzero ; constant = constant }} (fst1 ,, snd1) (fst2 ,, snd2) = *WellDefined fst1 fst2 ,, Group.+WellDefined additiveGroup (*WellDefined fst1 snd2) snd1
where
open Ring R
Group.0G (linearFunctionsGroup {S = S} {R = R} F) = record { xCoeff = Ring.1R R ; constant = Ring.0R R ; xCoeffNonzero = λ p Field.nontrivial F (Equivalence.symmetric (Setoid.eq S) p) }
Group.inverse (linearFunctionsGroup {S = S} {_*_ = _*_} {R = R} F) record { xCoeff = xCoeff ; constant = c ; xCoeffNonzero = pr } with Field.allInvertible F xCoeff pr
... | (inv , pr') = record { xCoeff = inv ; constant = inv * (Group.inverse (Ring.additiveGroup R) c) ; xCoeffNonzero = λ p Field.nontrivial F (transitive (symmetric (transitive (Ring.*WellDefined R p reflexive) (transitive (Ring.*Commutative R) (Ring.timesZero R)))) pr') }
where
open Setoid S
open Equivalence eq
Group.+Associative (linearFunctionsGroup {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} F) {record { xCoeff = xA ; xCoeffNonzero = xANonzero ; constant = cA }} {record { xCoeff = xB ; xCoeffNonzero = xBNonzero ; constant = cB }} {record { xCoeff = xC ; xCoeffNonzero = xCNonzero ; constant = cC }} = Ring.*Associative R ,, transitive (Group.+WellDefined additiveGroup (transitive *DistributesOver+ (Group.+WellDefined additiveGroup *Associative reflexive)) reflexive) (symmetric (Group.+Associative additiveGroup))
where
open Setoid S
open Equivalence eq
open Ring R
Group.identRight (linearFunctionsGroup {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} F) {record { xCoeff = xCoeff ; xCoeffNonzero = xCoeffNonzero ; constant = constant }} = transitive (Ring.*Commutative R) (Ring.identIsIdent R) ,, transitive (Group.+WellDefined additiveGroup (Ring.timesZero R) reflexive) (Group.identLeft additiveGroup)
where
open Ring R
open Setoid S
open Equivalence eq
Group.identLeft (linearFunctionsGroup {S = S} {R = R} F) {record { xCoeff = xCoeff ; xCoeffNonzero = xCoeffNonzero ; constant = constant }} = identIsIdent ,, transitive (Group.identRight additiveGroup) identIsIdent
where
open Setoid S
open Ring R
open Equivalence eq
Group.invLeft (linearFunctionsGroup F) {record { xCoeff = xCoeff ; xCoeffNonzero = xCoeffNonzero ; constant = constant }} with Field.allInvertible F xCoeff xCoeffNonzero
Group.invLeft (linearFunctionsGroup {S = S} {R = R} F) {record { xCoeff = xCoeff ; xCoeffNonzero = xCoeffNonzero ; constant = constant }} | inv , prInv = prInv ,, transitive (symmetric *DistributesOver+) (transitive (*WellDefined reflexive (Group.invRight additiveGroup)) (Ring.timesZero R))
where
open Setoid S
open Ring R
open Equivalence eq
Group.invRight (linearFunctionsGroup {S = S} {R = R} F) {record { xCoeff = xCoeff ; xCoeffNonzero = xCoeffNonzero ; constant = constant }} with Field.allInvertible F xCoeff xCoeffNonzero
... | inv , pr = transitive *Commutative pr ,, transitive (Group.+WellDefined additiveGroup *Associative reflexive) (transitive (Group.+WellDefined additiveGroup (*WellDefined (transitive *Commutative pr) reflexive) reflexive) (transitive (Group.+WellDefined additiveGroup identIsIdent reflexive) (Group.invLeft additiveGroup)))
where
open Setoid S
open Ring R
open Equivalence eq
{-
Question 3, part 2: prove that linearFunctionsGroup is not abelian
-}
-- We'll assume the field doesn't have characteristic 2.
linearFunctionsGroupNotAbelian : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} {F : Field R} (nonChar2 : Setoid.__ S ((Ring.1R R) + (Ring.1R R)) (Ring.0R R) False) AbelianGroup (linearFunctionsGroup F) False
linearFunctionsGroupNotAbelian {S = S} {_+_ = _+_} {_*_ = _*_} {R = R} {F = F} pr record { commutative = commutative } = ans
where
open Ring R
open Group additiveGroup
open Equivalence (Setoid.eq S) renaming (symmetric to symmetricS ; transitive to transitiveS ; reflexive to reflexiveS)
f : LinearFunction F
f = record { xCoeff = 1R ; xCoeffNonzero = λ p Field.nontrivial F (symmetricS p) ; constant = 1R }
g : LinearFunction F
g = record { xCoeff = 1R + 1R ; xCoeffNonzero = pr ; constant = 0R }
gf : LinearFunction F
gf = record { xCoeff = 1R + 1R ; xCoeffNonzero = pr ; constant = 1R + 1R }
fg : LinearFunction F
fg = record { xCoeff = 1R + 1R ; xCoeffNonzero = pr ; constant = 1R }
oneWay : Setoid.__ (linearFunctionsSetoid F) gf (composeLinearFunctions g f)
oneWay = symmetricS (transitiveS *Commutative identIsIdent) ,, transitiveS (symmetricS (transitiveS *Commutative identIsIdent)) (symmetricS (Group.identRight additiveGroup))
otherWay : Setoid.__ (linearFunctionsSetoid F) fg (composeLinearFunctions f g)
otherWay = symmetricS identIsIdent ,, transitiveS (symmetricS (Group.identLeft additiveGroup)) (Group.+WellDefined additiveGroup (symmetricS identIsIdent) (reflexiveS {1R}))
open Equivalence (Setoid.eq (linearFunctionsSetoid F))
bad : Setoid.__ (linearFunctionsSetoid F) gf fg
bad = transitive {gf} {composeLinearFunctions g f} {fg} oneWay (transitive {composeLinearFunctions g f} {composeLinearFunctions f g} {fg} (commutative {g} {f}) (symmetric {fg} {composeLinearFunctions f g} otherWay))
ans : False
ans with bad
ans | _ ,, contr = Field.nontrivial F (symmetricS (transitiveS {1R} {1R + (1R + Group.inverse additiveGroup 1R)} (transitiveS (symmetricS (Group.identRight additiveGroup)) (Group.+WellDefined additiveGroup reflexiveS (symmetricS (Group.invRight additiveGroup)))) (transitiveS (Group.+Associative additiveGroup) (transitiveS (Group.+WellDefined additiveGroup contr reflexiveS) (Group.invRight additiveGroup)))))