Files
agdaproofs/Groups/Groups.agda
2019-11-08 12:26:37 +00:00

102 lines
5.9 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Functions
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Naturals
open import Sets.FinSet
open import Groups.Definition
open import Sets.EquivalenceRelations
open import Groups.Homomorphisms.Definition
open import Groups.Lemmas
open import Groups.Homomorphisms.Lemmas
module Groups.Groups where
reflGroupWellDefined : {lvl : _} {A : Set lvl} {m n x y : A} {op : A A A} m x n y (op m n) (op x y)
reflGroupWellDefined {lvl} {A} {m} {n} {.m} {.n} {op} refl refl = refl
fourWay+Associative : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_·_ : A A A} (G : Group S _·_) {r s t u : A} (Setoid.__ S) (r · ((s · t) · u)) ((r · s) · (t · u))
fourWay+Associative {S = S} {_·_} G {r} {s} {t} {u} = transitive p1 (transitive p2 p3)
where
open Group G renaming (inverse to _^-1)
open Setoid S
open Equivalence eq
p1 : r · ((s · t) · u) (r · (s · t)) · u
p2 : (r · (s · t)) · u ((r · s) · t) · u
p3 : ((r · s) · t) · u (r · s) · (t · u)
p1 = Group.+Associative G
p2 = Group.+WellDefined G (Group.+Associative G) reflexive
p3 = symmetric (Group.+Associative G)
fourWay+Associative' : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A A A} (G : Group S _·_) {a b c d : A} (Setoid.__ S (((a · b) · c) · d) (a · ((b · c) · d)))
fourWay+Associative' {S = S} G = transitive (symmetric +Associative) (symmetric (fourWay+Associative G))
where
open Group G
open Setoid S
open Equivalence eq
fourWay+Associative'' : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A A A} (G : Group S _·_) {a b c d : A} (Setoid.__ S (a · (b · (c · d))) (a · ((b · c) · d)))
fourWay+Associative'' {S = S} {_·_ = _·_} G = transitive +Associative (symmetric (fourWay+Associative G))
where
open Group G
open Setoid S
open Equivalence eq
quotientGroupSetoid : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) {H : Group T _·B_} {underf : A B} (f : GroupHom G H underf) (Setoid {a} {d} A)
quotientGroupSetoid {A = A} {S = S} {T = T} {_·A_ = _·A_} {_·B_ = _·B_} G {H} {f} fHom = ansSetoid
where
open Setoid T
open Group H
open Equivalence eq
ansSetoid : Setoid A
Setoid.__ ansSetoid r s = (f (r ·A (Group.inverse G s))) 0G
Equivalence.reflexive (Setoid.eq ansSetoid) {b} = transitive (GroupHom.wellDefined fHom (Group.invRight G)) (imageOfIdentityIsIdentity fHom)
Equivalence.symmetric (Setoid.eq ansSetoid) {m} {n} pr = i
where
g : f (Group.inverse G (m ·A Group.inverse G n)) 0G
g = transitive (homRespectsInverse fHom {m ·A Group.inverse G n}) (transitive (inverseWellDefined H pr) (invIdent H))
h : f (Group.inverse G (Group.inverse G n) ·A Group.inverse G m) 0G
h = transitive (GroupHom.wellDefined fHom (Equivalence.symmetric (Setoid.eq S) (invContravariant G))) g
i : f (n ·A Group.inverse G m) 0G
i = transitive (GroupHom.wellDefined fHom (Group.+WellDefined G (Equivalence.symmetric (Setoid.eq S) (invTwice G n)) (Equivalence.reflexive (Setoid.eq S)))) h
Equivalence.transitive (Setoid.eq ansSetoid) {m} {n} {o} prmn prno = transitive (GroupHom.wellDefined fHom (Group.+WellDefined G (Equivalence.reflexive (Setoid.eq S)) (Equivalence.symmetric (Setoid.eq S) (Group.identLeft G)))) k
where
g : f (m ·A Group.inverse G n) ·B f (n ·A Group.inverse G o) 0G ·B 0G
g = replaceGroupOp H reflexive reflexive prmn prno reflexive
h : f (m ·A Group.inverse G n) ·B f (n ·A Group.inverse G o) 0G
h = transitive g identLeft
i : f ((m ·A Group.inverse G n) ·A (n ·A Group.inverse G o)) 0G
i = transitive (GroupHom.groupHom fHom) h
j : f (m ·A (((Group.inverse G n) ·A n) ·A Group.inverse G o)) 0G
j = transitive (GroupHom.wellDefined fHom (fourWay+Associative G)) i
k : f (m ·A ((Group.0G G) ·A Group.inverse G o)) 0G
k = transitive (GroupHom.wellDefined fHom (Group.+WellDefined G (Equivalence.reflexive (Setoid.eq S)) (Group.+WellDefined G (Equivalence.symmetric (Setoid.eq S) (Group.invLeft G)) (Equivalence.reflexive (Setoid.eq S))))) j
{-
quotientHom : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_}{f : A → B} → (fHom : GroupHom G H f) → A → A
quotientHom {S = S} {T = T} {_·A_ = _·A_} {_·B_ = _·B_} G {f = f} fHom a = {!!}
quotientInjection : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_}{f : A → B} → (fHom : GroupHom G H f) → GroupHom (quotientGroup G fHom) G (quotientHom G fHom)
GroupHom.groupHom (quotientInjection {S = S} {T = T} {_·A_ = _·A_} {_·B_ = _·B_} G {f = f} fHom) {x} {y} = {!!}
where
open Setoid S
open Equivalence eq
open Reflexive reflexiveEq
GroupHom.wellDefined (quotientInjection {S = S} {T = T} {_·A_ = _·A_} G {H = H} {f = f} fHom) {x} {y} x~y = {!!}
where
open Group G
open Setoid S
open Setoid T renaming (__ to _T_)
open Equivalence (Setoid.eq S)
open Reflexive reflexiveEq
have : f (x ·A inverse y) T Group.0G H
have = x~y
need : x y
need = {!!}
quotientIsSubgroup : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} {G : Group S _·A_} {H : Group T _·B_}{f : A → B}{fHom : GroupHom G H f} → Subgroup G (quotientGroup G fHom) (quotientInjection G fHom)
quotientIsSubgroup = {!!}
-}