Files
agdaproofs/Rings/Orders/Partial/Bounded.agda
2020-04-11 19:46:26 +01:00

36 lines
1.5 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K --guardedness #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Setoids.Setoids
open import Rings.Definition
open import Rings.Orders.Partial.Definition
open import Sets.EquivalenceRelations
open import Sequences
open import Setoids.Orders
open import Functions
open import LogicalFormulae
open import Numbers.Naturals.Semiring
open import Groups.Definition
module Rings.Orders.Partial.Bounded {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A A A} {_*_ : A A A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} (pRing : PartiallyOrderedRing R pOrder) where
open Group (Ring.additiveGroup R)
open import Groups.Lemmas (Ring.additiveGroup R)
open Setoid S
open Equivalence eq
open SetoidPartialOrder pOrder
BoundedAbove : Sequence A Set (m o)
BoundedAbove x = Sg A (λ K (n : ) index x n < K)
BoundedBelow : Sequence A Set (m o)
BoundedBelow x = Sg A (λ K (n : ) K < index x n)
Bounded : Sequence A Set (m o)
Bounded x = Sg A (λ K (n : ) ((Group.inverse (Ring.additiveGroup R) K) < index x n) && (index x n < K))
boundNonzero : {s : Sequence A} (b : Bounded s) underlying b 0G False
boundNonzero {s} (a , b) isEq with b 0
... | bad1 ,, bad2 = irreflexive (<Transitive bad1 (<WellDefined reflexive (transitive isEq (symmetric (transitive (inverseWellDefined isEq) invIdent))) bad2))