mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-14 07:58:41 +00:00
31 lines
1.1 KiB
Agda
31 lines
1.1 KiB
Agda
{-# OPTIONS --safe --warning=error --without-K #-}
|
|
|
|
open import LogicalFormulae
|
|
open import Groups.Groups
|
|
open import Groups.Homomorphisms.Definition
|
|
open import Groups.Definition
|
|
open import Numbers.Naturals.Definition
|
|
open import Numbers.Naturals.Order
|
|
open import Setoids.Orders
|
|
open import Setoids.Setoids
|
|
open import Functions
|
|
open import Sets.EquivalenceRelations
|
|
open import Rings.Definition
|
|
open import Rings.Homomorphisms.Definition
|
|
open import Groups.Homomorphisms.Lemmas
|
|
open import Rings.IntegralDomains.Definition
|
|
open import Rings.IntegralDomains.Examples
|
|
open import Rings.EuclideanDomains.Definition
|
|
open import Fields.Fields
|
|
open import WellFoundedInduction
|
|
|
|
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
|
|
|
module Rings.EuclideanDomains.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} (E : EuclideanDomain R) where
|
|
|
|
open import Rings.PrincipalIdealDomain R
|
|
open import Rings.Ideals.Principal.Definition R
|
|
|
|
euclideanDomainIsPid : {c : _} → PrincipalIdealDomain {c}
|
|
euclideanDomainIsPid ideal = {!!}
|