Files
agdaproofs/Rings/EuclideanDomains/Lemmas.agda
2019-12-07 13:00:18 +00:00

31 lines
1.1 KiB
Agda

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Groups
open import Groups.Homomorphisms.Definition
open import Groups.Definition
open import Numbers.Naturals.Definition
open import Numbers.Naturals.Order
open import Setoids.Orders
open import Setoids.Setoids
open import Functions
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Rings.Homomorphisms.Definition
open import Groups.Homomorphisms.Lemmas
open import Rings.IntegralDomains.Definition
open import Rings.IntegralDomains.Examples
open import Rings.EuclideanDomains.Definition
open import Fields.Fields
open import WellFoundedInduction
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Rings.EuclideanDomains.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A A A} {R : Ring S _+_ _*_} (E : EuclideanDomain R) where
open import Rings.PrincipalIdealDomain R
open import Rings.Ideals.Principal.Definition R
euclideanDomainIsPid : {c : _} PrincipalIdealDomain {c}
euclideanDomainIsPid ideal = {!!}