Files
agdaproofs/Lists/Monad.agda
2019-12-08 11:18:39 +00:00

29 lines
931 B
Agda

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Functions
open import Lists.Definition
open import Lists.Fold.Fold
open import Lists.Concat
open import Lists.Length
open import Numbers.Naturals.Semiring
module Lists.Monad where
open import Lists.Map.Map public
flatten : {a : _} {A : Set a} (l : List (List A)) List A
flatten [] = []
flatten (l :: ls) = l ++ flatten ls
flatten' : {a : _} {A : Set a} (l : List (List A)) List A
flatten' = fold _++_ []
flatten=flatten' : {a : _} {A : Set a} (l : List (List A)) flatten l flatten' l
flatten=flatten' [] = refl
flatten=flatten' (l :: ls) = applyEquality (l ++_) (flatten=flatten' ls)
lengthFlatten : {a : _} {A : Set a} (l : List (List A)) length (flatten l) (fold _+N_ zero (map length l))
lengthFlatten [] = refl
lengthFlatten (l :: ls) rewrite lengthConcat l (flatten ls) | lengthFlatten ls = refl