Files
agdaproofs/Setoids/Cardinality/Infinite/Lemmas.agda
2020-04-05 11:09:12 +01:00

30 lines
1.6 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import LogicalFormulae
open import Functions
open import Numbers.Naturals.Definition
open import Numbers.Naturals.Order
open import Sets.FinSet.Definition
open import Sets.FinSet.Lemmas
open import Setoids.Setoids
open import Setoids.Cardinality.Infinite.Definition
open import Sets.Cardinality.Infinite.Lemmas
open import Setoids.Subset
open import Sets.EquivalenceRelations
module Setoids.Cardinality.Infinite.Lemmas where
finsetNotInfiniteSetoid : {n : } InfiniteSetoid (reflSetoid (FinSet n)) False
finsetNotInfiniteSetoid {n} isInfinite = isInfinite n id (record { inj = record { wellDefined = id ; injective = id } ; surj = record { wellDefined = id ; surjective = λ {x} x , refl } })
dedekindInfiniteImpliesInfiniteSetoid : {a b : _} {A : Set a} (S : Setoid {a} {b} A) DedekindInfiniteSetoid S InfiniteSetoid S
dedekindInfiniteImpliesInfiniteSetoid S record { inj = inj ; isInjection = isInj } zero f isBij with SetoidInvertible.inverse (setoidBijectiveImpliesInvertible isBij) (inj 0)
... | ()
dedekindInfiniteImpliesInfiniteSetoid {A = A} S record { inj = inj ; isInjection = isInj } (succ n) f isBij = noInjectionNToFinite {f = t} tInjective
where
t : FinSet (succ n)
t n = SetoidInvertible.inverse (setoidBijectiveImpliesInvertible isBij) (inj n)
tInjective : Injection t
tInjective pr = SetoidInjection.injective isInj (SetoidInjection.injective (SetoidBijection.inj (setoidInvertibleImpliesBijective (inverseInvertible (setoidBijectiveImpliesInvertible isBij)))) pr)