Files
agdaproofs/Modules/PolynomialModule.agda
2020-03-28 21:34:14 +00:00

105 lines
6.9 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import Sets.EquivalenceRelations
open import LogicalFormulae
open import Setoids.Setoids
open import Rings.Definition
open import Modules.Definition
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Lists.Lists
open import Vectors
open import Groups.Definition
open import Orders.Total.Definition
open import Groups.Homomorphisms.Definition
open import Groups.Homomorphisms.Lemmas
open import Rings.Homomorphisms.Definition
module Modules.PolynomialModule {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A A A} (R : Ring S _+_ _*_) where
open Ring R
open import Groups.Polynomials.Definition additiveGroup
open import Groups.Polynomials.Group additiveGroup
open import Rings.Polynomial.Multiplication R
open import Rings.Polynomial.Evaluation R
open import Rings.Polynomial.Ring R
open import Rings.Lemmas polyRing
polynomialRingModule : Module R abelianUnderlyingGroup (λ a b _*P_ (polyInjection a) b)
Module.dotWellDefined (polynomialRingModule) r=s t=u = Ring.*WellDefined polyRing (r=s ,, record {}) t=u
Module.dotDistributesLeft (polynomialRingModule) {r} {s} {t} = Ring.*DistributesOver+ polyRing {polyInjection r} {s} {t}
Module.dotDistributesRight (polynomialRingModule) {r} {s} {t} = Ring.*DistributesOver+' polyRing {polyInjection r} {polyInjection s} {t}
Module.dotAssociative (polynomialRingModule) {r} {s} {t} = Equivalence.transitive (Setoid.eq naivePolySetoid) (Ring.*WellDefined polyRing m (Equivalence.reflexive (Setoid.eq naivePolySetoid) {t})) (Equivalence.symmetric (Setoid.eq naivePolySetoid) (Ring.*Associative polyRing {polyInjection r} {polyInjection s} {t}))
where
m : Setoid.__ naivePolySetoid ((r * s) :: []) ((r * s) :: (([] +P []) +P (0R :: [])))
m = Equivalence.reflexive (Setoid.eq S) ,, (Equivalence.reflexive (Setoid.eq S) ,, record {})
Module.dotIdentity (polynomialRingModule) = Ring.identIsIdent polyRing
open import Modules.Span polynomialRingModule
polynomialBasis : NaivePoly
polynomialBasis zero = polyInjection 1R
polynomialBasis (succ a) = 0R :: polynomialBasis a
count : (n : ) Vec n
count zero = []
count (succ n) = 0 ,- vecMap succ (count n)
lemma : {d : _} {D : Set d} (f : D List A) {n : } (m : Vec D n) (r : Vec A n) Setoid.__ naivePolySetoid (dot (vecMap (λ i 0R :: f i) m) r) (0R :: dot (vecMap f m) r)
lemma f [] [] = reflexive ,, record {}
where
open Setoid S
open Equivalence eq
lemma f (m ,- ms) (r ,- rs) rewrite refl {x = 0} = transitive (+WellDefined {(r * 0R) :: (((map (_*_ r) (f m)) +P []) +P (0R :: []))} {_} {(r * 0R) :: (((map (_*_ r) (f m)) +P []) +P (0R :: []))} (reflexive {(r * 0R) :: (((map (_*_ r) (f m)) +P []) +P (0R :: []))}) (lemma f ms rs)) (Equivalence.transitive (Setoid.eq S) (Group.identRight additiveGroup) (Ring.timesZero R) ,, +WellDefined {((map (_*_ r) (f m)) +P []) +P (0R :: [])} {dot (vecMap f ms) rs} {(r :: []) *P f m} {dot (vecMap f ms) rs} t (reflexive {dot (vecMap f ms) rs}))
where
open Setoid naivePolySetoid
open Equivalence eq
open Group polyGroup
lemm : (v : List A) polysEqual (map (_*_ r) v) ((r :: []) *P v)
lemm [] = record {}
lemm (x :: v) = Equivalence.reflexive (Setoid.eq S) ,, symmetric (transitive (+WellDefined {map (_*_ r) v +P []} {0R :: []} {_} {[]} reflexive (Equivalence.reflexive (Setoid.eq S) ,, record {})) (transitive (identRight {(map (_*_ r) v) +P []}) (identRight {map (_*_ r) v})))
t : ((map (_*_ r) (f m) +P []) +P (0R :: [])) ((r :: []) *P f m)
t = transitive (+WellDefined {map (_*_ r) (f m) +P []} {0R :: []} {_} {[]} reflexive (Equivalence.reflexive (Setoid.eq S) ,, record {})) (transitive (identRight {map (_*_ r) (f m) +P []}) (transitive (identRight {map (_*_ r) (f m)}) (lemm (f m))))
identityMap : (v : List A) Setoid.__ naivePolySetoid (dot (vecMap polynomialBasis (count (length v))) (listToVec v)) v
identityMap [] = record {}
identityMap (x :: v) rewrite vecMapCompose succ polynomialBasis (count (length v)) = transitive (+WellDefined {(x * 1R) :: Group.0G additiveGroup :: []} {dot (vecMap (λ i Group.0G additiveGroup :: polynomialBasis i) (count (length v))) (listToVec v)} {(x * 1R) :: 0R :: []} {0R :: dot (vecMap polynomialBasis (count (length v))) (listToVec v)} (reflexive {(x * 1R) :: 0R :: []}) (lemma polynomialBasis (count (length v)) (listToVec v))) (Equivalence.transitive (Setoid.eq S) (Group.identRight additiveGroup) (Equivalence.transitive (Setoid.eq S) *Commutative identIsIdent) ,, transitive (+WellDefined {0R :: []} {dot (vecMap polynomialBasis (count (length v))) (listToVec v)} {[]} (Equivalence.reflexive (Setoid.eq S) ,, record {}) reflexive) (transitive identLeft (identityMap v)))
where
open Group polyGroup
open Setoid naivePolySetoid
open Equivalence eq
polynomialBasisSpans : Spans polynomialBasis
polynomialBasisSpans m = length m , ((count (length m) ,, listToVec m) , identityMap m)
{-
private
indepWithZero : {n : } (rs : Vec n) (indicesDistinct : {a b : } → (a<n : a <N succ n) (b<n : b <N succ n) → vecIndex (0 ,- rs) a a<n ≡ vecIndex (0 ,- rs) b b<n → a ≡ b) (b : A) (bs : Vec A n) (dotZero : Setoid.__ naivePolySetoid (((b * 1R) :: 0R :: []) +P (dot (vecMap polynomialBasis rs) bs)) []) → (nonzero : {a : } → (a<n : a <N n) → 0 <N vecIndex rs a a<n) → Setoid.__ S 0R b && _=V_ additiveGroup (vecPure 0R) bs
indepWithZero rs indicesDistinct b bs dotZero indicesNonzero = symmetric b=0 ,, {!!}
where
open Setoid S
open Equivalence eq
open Group additiveGroup
t : (inducedFunction (((b * 1R) :: 0R :: []) +P (dot (vecMap polynomialBasis rs) bs)) 0R) 0R
t = inducedFunctionWellDefined dotZero 0R
u : ((inducedFunction ((b * 1R) :: 0R :: []) 0R) + inducedFunction (dot (vecMap polynomialBasis rs) bs) 0R) 0R
u = transitive (symmetric (GroupHom.groupHom (RingHom.groupHom (inducedFunctionIsHom 0R)) {((b * 1R) :: 0R :: [])} {dot (vecMap polynomialBasis rs) bs})) t
b=0 : b 0R
b=0 = transitive (symmetric (transitive (+WellDefined (transitive (transitive (transitive (+WellDefined reflexive (transitive *Commutative timesZero)) identRight) *Commutative) identIsIdent) {!imageOfIdentityIsIdentity (RingHom.groupHom (inducedFunctionIsHom 0R))!}) (identRight {b}))) u
polynomialBasisIndependent : Independent polynomialBasis
polynomialBasisIndependent [] indicesDistinct [] dotZero = record {}
polynomialBasisIndependent {succ n} (zero ,- rs) indicesDistinct (b ,- bs) dotZero = indepWithZero rs indicesDistinct b bs dotZero t
where
t : {a : } (a<n : a <N n) → 0 <N vecIndex rs a a<n
t {a} a<n with TotalOrder.totality TotalOrder 0 (vecIndex rs a a<n)
t {a} a<n | inl (inl x) = x
t {a} a<n | inr x with indicesDistinct {succ a} {0} (succPreservesInequality a<n) (succIsPositive n) (equalityCommutative x)
... | ()
polynomialBasisIndependent (succ r ,- rs) indicesDistinct (b ,- bs) dotZero = {!!}
where
rearr : {!!}
rearr = {!!}
-}