Files
agdaproofs/Groups/CyclicGroups.agda
2019-08-18 14:57:41 +01:00

68 lines
4.4 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Functions
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals
open import Numbers.Integers
open import Sets.FinSet
open import Groups.Groups
open import Groups.Definition
module Groups.CyclicGroups where
positiveEltPower : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A A A} (G : Group S _·_) (x : A) (i : ) A
positiveEltPower G x 0 = Group.identity G
positiveEltPower {_·_ = _·_} G x (succ i) = x · (positiveEltPower G x i)
positiveEltPowerCollapse : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A A A} (G : Group S _+_) (x : A) (i j : ) Setoid.__ S ((positiveEltPower G x i) + (positiveEltPower G x j)) (positiveEltPower G x (i +N j))
positiveEltPowerCollapse G x zero j = Group.multIdentLeft G
positiveEltPowerCollapse {S = S} G x (succ i) j = transitive (symmetric multAssoc) (wellDefined reflexive (positiveEltPowerCollapse G x i j))
where
open Setoid S
open Group G
open Transitive (Equivalence.transitiveEq eq)
open Symmetric (Equivalence.symmetricEq eq)
open Reflexive (Equivalence.reflexiveEq eq)
elementPower : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A A A} (G : Group S _·_) (x : A) (i : ) A
elementPower G x (nonneg i) = positiveEltPower G x i
elementPower {_·_ = _·_} G x (negSucc i) = Group.inverse G (positiveEltPower G x (succ i))
record CyclicGroup {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A A A} (G : Group S _·_) : Set (m n) where
field
generator : A
cyclic : {a : A} (Sg (λ i Setoid.__ S (elementPower G generator i) a))
elementPowerCollapse : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A A A} (G : Group S _·_) (x : A) (i j : ) Setoid.__ S ((elementPower G x i) · (elementPower G x j)) (elementPower G x (i +Z j))
elementPowerCollapse {S = S} {_+_} G x (nonneg a) (nonneg b) rewrite addingNonnegIsHom a b = positiveEltPowerCollapse G x a b
elementPowerCollapse G x (nonneg a) (negSucc b) = {!!}
elementPowerCollapse G x (negSucc a) (nonneg b) = {!!}
elementPowerCollapse G x (negSucc a) (negSucc b) = {!!}
elementPowerHom : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A A A} (G : Group S _·_) (x : A) GroupHom Group G (λ i elementPower G x i)
GroupHom.groupHom (elementPowerHom {S = S} G x) {a} {b} = symmetric (elementPowerCollapse G x a b)
where
open Setoid S
open Group G
open Symmetric (Equivalence.symmetricEq eq)
GroupHom.wellDefined (elementPowerHom {S = S} G x) {.y} {y} refl = Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq S))
subgroupOfCyclicIsCyclic : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+A_ : A A A} {_+B_ : B B B} {G : Group S _+A_} {H : Group T _+B_} {f : B A} {fHom : GroupHom H G f} Subgroup G H fHom CyclicGroup G CyclicGroup H
CyclicGroup.generator (subgroupOfCyclicIsCyclic {f = f} subgrp record { generator = generator ; cyclic = cyclic }) = {!f generator!}
CyclicGroup.cyclic (subgroupOfCyclicIsCyclic subgrp gCyclic) = {!!}
-- Prefer to prove that subgroup of cyclic is cyclic, then deduce this like with abelian groups
{-
cyclicIsGroupProperty : {m n o p : _} {A : Set m} {B : Set o} {S : Setoid {m} {n} A} {T : Setoid {o} {p} B} {_+_ : A → A → A} {_*_ : B → B → B} {G : Group S _+_} {H : Group T _*_} → GroupsIsomorphic G H → CyclicGroup G → CyclicGroup H
CyclicGroup.generator (cyclicIsGroupProperty {H = H} iso G) = GroupsIsomorphic.isomorphism iso (CyclicGroup.generator G)
CyclicGroup.cyclic (cyclicIsGroupProperty {H = H} iso G) {a} with GroupIso.surj (GroupsIsomorphic.proof iso) {a}
CyclicGroup.cyclic (cyclicIsGroupProperty {H = H} iso G) {a} | a' , b with CyclicGroup.cyclic G {a'}
... | pow , prPow = pow , {!!}
-}
-- Proof of abelianness of cyclic groups: a cyclic group is the image of elementPowerHom into Z, so is isomorphic to a subgroup of Z. All subgroups of an abelian group are abelian.
cyclicGroupIsAbelian : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A A A} {G : Group S _+_} (cyclic : CyclicGroup G) AbelianGroup G
cyclicGroupIsAbelian cyclic = {!!}