Files
agdaproofs/Groups/Actions.agda
2019-08-18 14:57:41 +01:00

329 lines
28 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Functions
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals
open import Sets.FinSet
open import Groups.GroupDefinition
open import Groups.GroupsLemmas
open import Groups.Groups
open import Groups.SymmetryGroups
open import Groups.Groups2
module Groups.GroupActions where
record GroupAction {m n o p : _} {A : Set m} {S : Setoid {m} {o} A} {_·_ : A A A} {B : Set n} (G : Group S _·_) (X : Setoid {n} {p} B) : Set (m n o p) where
open Group G
open Setoid S renaming (__ to _G_)
open Setoid X renaming (__ to _X_)
field
action : A B B
actionWellDefined1 : {g h : A} {x : B} (g G h) action g x X action h x
actionWellDefined2 : {g : A} {x y : B} (x X y) action g x X action g y
identityAction : {x : B} action identity x X x
associativeAction : {x : B} {g h : A} action (g · h) x X action g (action h x)
trivialAction : {m n o p : _} {A : Set m} {S : Setoid {m} {o} A} {_·_ : A A A} {B : Set n} (G : Group S _·_) (X : Setoid {n} {p} B) GroupAction G X
trivialAction G X = record { action = λ _ x x ; actionWellDefined1 = λ _ reflexive ; actionWellDefined2 = λ wd1 wd1 ; identityAction = reflexive ; associativeAction = reflexive }
where
open Setoid X renaming (eq to setoidEq)
open Reflexive (Equivalence.reflexiveEq (Setoid.eq X))
leftRegularAction : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A A A} (G : Group S _·_) GroupAction G S
GroupAction.action (leftRegularAction {_·_ = _·_} G) g h = g · h
where
open Group G
GroupAction.actionWellDefined1 (leftRegularAction {S = S} G) eq1 = wellDefined eq1 reflexive
where
open Group G
open Setoid S renaming (eq to setoidEq)
open Equivalence setoidEq
open Reflexive (Equivalence.reflexiveEq (Setoid.eq S))
GroupAction.actionWellDefined2 (leftRegularAction {S = S} G) {g} {x} {y} eq1 = wellDefined reflexive eq1
where
open Group G
open Setoid S
open Reflexive (Equivalence.reflexiveEq (Setoid.eq S))
GroupAction.identityAction (leftRegularAction G) = multIdentLeft
where
open Group G
GroupAction.associativeAction (leftRegularAction {S = S} G) = symmetric multAssoc
where
open Group G
open Setoid S
open Symmetric (Equivalence.symmetricEq (Setoid.eq S))
conjugationAction : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A A A} (G : Group S _·_) GroupAction G S
conjugationAction {S = S} {_·_ = _·_} G = record { action = λ g h (g · h) · (inverse g) ; actionWellDefined1 = λ gh wellDefined (wellDefined gh reflexive) (inverseWellDefined G gh) ; actionWellDefined2 = λ x~y wellDefined (wellDefined reflexive x~y) reflexive ; identityAction = transitive (wellDefined reflexive (invIdentity G)) (transitive multIdentRight multIdentLeft) ; associativeAction = λ {x} {g} {h} transitive (wellDefined reflexive (invContravariant G)) (transitive multAssoc (wellDefined (fourWayAssoc' G) reflexive)) }
where
open Group G
open Setoid S
open Reflexive (Equivalence.reflexiveEq (Setoid.eq S))
open Transitive (Equivalence.transitiveEq (Setoid.eq S))
conjugationNormalSubgroupAction : {m n o p : _} {A : Set m} {B : Set o} {S : Setoid {m} {n} A} {T : Setoid {o} {p} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) (H : Group T _·B_) {underF : A B} (f : GroupHom G H underF) GroupAction G (quotientGroupSetoid G f)
GroupAction.action (conjugationNormalSubgroupAction {_·A_ = _·A_} G H {f} fHom) a b = a ·A (b ·A (Group.inverse G a))
GroupAction.actionWellDefined1 (conjugationNormalSubgroupAction {S = S} {T = T} {_·A_ = _·A_} G H {f} fHom) {g} {h} {x} g~h = ans
where
open Group G
open Setoid T
open Transitive (Equivalence.transitiveEq (Setoid.eq T))
open Symmetric (Equivalence.symmetricEq (Setoid.eq T))
open Reflexive (Equivalence.reflexiveEq (Setoid.eq S))
ans : f ((g ·A (x ·A (inverse g))) ·A inverse (h ·A (x ·A inverse h))) Group.identity H
ans = transitive (GroupHom.wellDefined fHom (transferToRight'' G (Group.wellDefined G g~h (Group.wellDefined G reflexive (inverseWellDefined G g~h))))) (imageOfIdentityIsIdentity fHom)
GroupAction.actionWellDefined2 (conjugationNormalSubgroupAction {S = S} {T = T} {_·A_ = _·A_} {_·B_ = _·B_} G H {f} fHom) {g} {x} {y} x~y = ans
where
open Group G
open Setoid T
open Transitive (Equivalence.transitiveEq (Setoid.eq T))
open Transitive (Equivalence.transitiveEq (Setoid.eq S)) renaming (transitive to transitiveG)
open Symmetric (Equivalence.symmetricEq (Setoid.eq S))
open Symmetric (Equivalence.symmetricEq (Setoid.eq T)) renaming (symmetric to symmetricH)
open Reflexive (Equivalence.reflexiveEq (Setoid.eq S))
open Reflexive (Equivalence.reflexiveEq (Setoid.eq T)) renaming (reflexive to reflexiveH)
input : f (x ·A inverse y) Group.identity H
input = x~y
p1 : Setoid.__ S ((g ·A (x ·A inverse g)) ·A inverse (g ·A (y ·A inverse g))) ((g ·A (x ·A inverse g)) ·A (inverse (y ·A (inverse g)) ·A inverse g))
p1 = Group.wellDefined G reflexive (invContravariant G)
p2 : Setoid.__ S ((g ·A (x ·A inverse g)) ·A (inverse (y ·A (inverse g)) ·A inverse g)) ((g ·A (x ·A inverse g)) ·A ((inverse (inverse g) ·A inverse y) ·A inverse g))
p2 = Group.wellDefined G reflexive (Group.wellDefined G (invContravariant G) reflexive)
p3 : Setoid.__ S ((g ·A (x ·A inverse g)) ·A ((inverse (inverse g) ·A inverse y) ·A inverse g)) (g ·A (((x ·A inverse g) ·A (inverse (inverse g) ·A inverse y)) ·A inverse g))
p3 = symmetric (fourWayAssoc G)
p4 : Setoid.__ S (g ·A (((x ·A inverse g) ·A (inverse (inverse g) ·A inverse y)) ·A inverse g)) (g ·A ((x ·A ((inverse g ·A inverse (inverse g)) ·A inverse y)) ·A inverse g))
p4 = Group.wellDefined G reflexive (Group.wellDefined G (symmetric (fourWayAssoc G)) reflexive)
p5 : Setoid.__ S (g ·A ((x ·A ((inverse g ·A inverse (inverse g)) ·A inverse y)) ·A inverse g)) (g ·A ((x ·A (identity ·A inverse y)) ·A inverse g))
p5 = Group.wellDefined G reflexive (Group.wellDefined G (Group.wellDefined G reflexive (Group.wellDefined G invRight reflexive)) reflexive)
p6 : Setoid.__ S (g ·A ((x ·A (identity ·A inverse y)) ·A inverse g)) (g ·A ((x ·A inverse y) ·A inverse g))
p6 = Group.wellDefined G reflexive (Group.wellDefined G (Group.wellDefined G reflexive multIdentLeft) reflexive)
intermediate : Setoid.__ S ((g ·A (x ·A inverse g)) ·A inverse (g ·A (y ·A inverse g))) (g ·A ((x ·A inverse y) ·A inverse g))
intermediate = transitiveG p1 (transitiveG p2 (transitiveG p3 (transitiveG p4 (transitiveG p5 p6))))
p7 : f ((g ·A (x ·A inverse g)) ·A inverse (g ·A (y ·A inverse g))) f (g ·A ((x ·A inverse y) ·A inverse g))
p7 = GroupHom.wellDefined fHom intermediate
p8 : f (g ·A ((x ·A inverse y) ·A inverse g)) (f g) ·B (f ((x ·A inverse y) ·A inverse g))
p8 = GroupHom.groupHom fHom
p9 : (f g) ·B (f ((x ·A inverse y) ·A inverse g)) (f g) ·B (f (x ·A inverse y) ·B f (inverse g))
p9 = Group.wellDefined H reflexiveH (GroupHom.groupHom fHom)
p10 : (f g) ·B (f (x ·A inverse y) ·B f (inverse g)) (f g) ·B (Group.identity H ·B f (inverse g))
p10 = Group.wellDefined H reflexiveH (Group.wellDefined H input reflexiveH)
p11 : (f g) ·B (Group.identity H ·B f (inverse g)) (f g) ·B (f (inverse g))
p11 = Group.wellDefined H reflexiveH (Group.multIdentLeft H)
p12 : (f g) ·B (f (inverse g)) f (g ·A (inverse g))
p12 = symmetricH (GroupHom.groupHom fHom)
intermediate2 : f ((g ·A (x ·A inverse g)) ·A inverse (g ·A (y ·A inverse g))) (f (g ·A (inverse g)))
intermediate2 = transitive p7 (transitive p8 (transitive p9 (transitive p10 (transitive p11 p12))))
ans : f ((g ·A (x ·A inverse g)) ·A inverse (g ·A (y ·A inverse g))) Group.identity H
ans = transitive intermediate2 (transitive (GroupHom.wellDefined fHom invRight) (imageOfIdentityIsIdentity fHom))
GroupAction.identityAction (conjugationNormalSubgroupAction {S = S} {T = T} {_·A_ = _·A_} G H {f} fHom) {x} = ans
where
open Group G
open Setoid S
open Setoid T renaming (__ to _T_)
open Transitive (Equivalence.transitiveEq (Setoid.eq T))
i : Setoid.__ S (x ·A inverse identity) x
i = Transitive.transitive (Equivalence.transitiveEq (Setoid.eq S)) (wellDefined (Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq S))) (invIdentity G)) multIdentRight
h : identity ·A (x ·A inverse identity) x
h = Transitive.transitive (Equivalence.transitiveEq (Setoid.eq S)) multIdentLeft i
g : ((identity ·A (x ·A inverse identity)) ·A inverse x) identity
g = transferToRight'' G h
ans : f ((identity ·A (x ·A inverse identity)) ·A Group.inverse G x) T Group.identity H
ans = transitive (GroupHom.wellDefined fHom g) (imageOfIdentityIsIdentity fHom)
GroupAction.associativeAction (conjugationNormalSubgroupAction {S = S} {T = T} {_·A_ = _·A_} G H {f} fHom) {x} {g} {h} = ans
where
open Group G
open Setoid T renaming (__ to _T_)
open Setoid S renaming (__ to _S_)
open Transitive (Equivalence.transitiveEq (Setoid.eq T)) renaming (transitive to transitiveH)
open Transitive (Equivalence.transitiveEq (Setoid.eq S)) renaming (transitive to transitiveG)
open Symmetric (Equivalence.symmetricEq (Setoid.eq S)) renaming (symmetric to symmetricG)
open Reflexive (Equivalence.reflexiveEq (Setoid.eq S))
ans : f (((g ·A h) ·A (x ·A inverse (g ·A h))) ·A inverse ((g ·A ((h ·A (x ·A inverse h)) ·A inverse g)))) T Group.identity H
ans = transitiveH (GroupHom.wellDefined fHom (transferToRight'' G (transitiveG (symmetricG multAssoc) (Group.wellDefined G reflexive (transitiveG (wellDefined reflexive (transitiveG (wellDefined reflexive (invContravariant G)) multAssoc)) multAssoc))))) (imageOfIdentityIsIdentity fHom)
actionPermutation : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (g : A) SymmetryGroupElements T
actionPermutation {B = B} {T = T} {_+_ = _+_} {G = G} action g = sym {f = λ x (GroupAction.action action g x)} (record { inj = record { injective = inj ; wellDefined = GroupAction.actionWellDefined2 action } ; surj = record { surjective = surj ; wellDefined = GroupAction.actionWellDefined2 action } })
where
open Setoid T
open Reflexive (Equivalence.reflexiveEq (Setoid.eq T))
open Symmetric (Equivalence.symmetricEq (Setoid.eq T))
open Transitive (Equivalence.transitiveEq (Setoid.eq T))
open Group G
inj : {x y : B} (Setoid.__ T (GroupAction.action action g x) (GroupAction.action action g y)) Setoid.__ T x y
inj {x} {y} gx=gy = transitive (symmetric (GroupAction.identityAction action)) (transitive (transitive (symmetric (GroupAction.actionWellDefined1 action (invLeft {g}))) (transitive (transitive (GroupAction.associativeAction action) (transitive (GroupAction.actionWellDefined2 action gx=gy) (symmetric (GroupAction.associativeAction action)))) (GroupAction.actionWellDefined1 action (invLeft {g})))) (GroupAction.identityAction action))
surj : {x : B} Sg B (λ a GroupAction.action action g a x)
surj {x} = GroupAction.action action (inverse g) x , transitive (symmetric (GroupAction.associativeAction action)) (transitive (GroupAction.actionWellDefined1 action invRight) (GroupAction.identityAction action))
actionPermutationMapIsHom : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) GroupHom G (symmetricGroup T) (actionPermutation action)
GroupHom.groupHom (actionPermutationMapIsHom {T = T} action) = ExtensionallyEqual.eq λ {z} GroupAction.associativeAction action
where
open Setoid T
open Reflexive (Equivalence.reflexiveEq (Setoid.eq T))
open Symmetric (Equivalence.symmetricEq (Setoid.eq T))
open Transitive (Equivalence.transitiveEq (Setoid.eq T))
GroupHom.wellDefined (actionPermutationMapIsHom action) x=y = ExtensionallyEqual.eq λ {z} GroupAction.actionWellDefined1 action x=y
data Stabiliser {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) : Set (a b c d) where
stab : (g : A) Setoid.__ T (GroupAction.action action g x) x Stabiliser action x
stabiliserSetoid : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) Setoid (Stabiliser action x)
Setoid.__ (stabiliserSetoid {S = S} action x) (stab g gx=x) (stab h hx=x) = Setoid.__ S g h
Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq (stabiliserSetoid {S = S} action x))) {stab g _} = Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq S))
Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq (stabiliserSetoid {S = S} action x))) {stab g _} {stab h _} = Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq S))
Transitive.transitive (Equivalence.transitiveEq (Setoid.eq (stabiliserSetoid {S = S} action x))) {stab g _} {stab h _} {stab i _} = Transitive.transitive (Equivalence.transitiveEq (Setoid.eq S))
stabiliserGroupOp : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) {x : B} Stabiliser action x Stabiliser action x Stabiliser action x
stabiliserGroupOp {T = T} {_+_ = _+_} action (stab p px=x) (stab q qx=x) = stab (p + q) (transitive (GroupAction.associativeAction action) (transitive (GroupAction.actionWellDefined2 action qx=x) px=x))
where
open Setoid T
open Reflexive (Equivalence.reflexiveEq (Setoid.eq T))
open Symmetric (Equivalence.symmetricEq (Setoid.eq T))
open Transitive (Equivalence.transitiveEq (Setoid.eq T))
stabiliserGroup : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) {x : B} Group (stabiliserSetoid action x) (stabiliserGroupOp action)
Group.wellDefined (stabiliserGroup {T = T} {G = G} action {x}) {stab m mx=x} {stab n nx=x} {stab r rx=x} {stab s sx=x} m=r n=s = Group.wellDefined G m=r n=s
where
open Setoid T
open Reflexive (Equivalence.reflexiveEq (Setoid.eq T))
open Symmetric (Equivalence.symmetricEq (Setoid.eq T))
open Transitive (Equivalence.transitiveEq (Setoid.eq T))
Group.identity (stabiliserGroup {G = G} action) = stab (Group.identity G) (GroupAction.identityAction action)
Group.inverse (stabiliserGroup {T = T} {_+_ = _+_} {G = G} action {x}) (stab g gx=x) = stab (Group.inverse G g) (transitive {_} {GroupAction.action action ((inverse g) + g) x} (symmetric (transitive (GroupAction.associativeAction action) (GroupAction.actionWellDefined2 action gx=x))) (transitive (GroupAction.actionWellDefined1 action invLeft) (GroupAction.identityAction action)))
where
open Group G
open Setoid T
open Reflexive (Equivalence.reflexiveEq (Setoid.eq T))
open Symmetric (Equivalence.symmetricEq (Setoid.eq T))
open Transitive (Equivalence.transitiveEq (Setoid.eq T))
Group.multAssoc (stabiliserGroup {G = G} action) {stab m mx=x} {stab n nx=x} {stab o ox=x} = Group.multAssoc G
Group.multIdentRight (stabiliserGroup {G = G} action) {stab m mx=x} = Group.multIdentRight G
Group.multIdentLeft (stabiliserGroup {G = G} action) {stab m mx=x }= Group.multIdentLeft G
Group.invLeft (stabiliserGroup {G = G} action) {stab m mx=x} = Group.invLeft G
Group.invRight (stabiliserGroup {G = G} action) {stab m mx=x} = Group.invRight G
stabiliserInjection : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) {x : B} Stabiliser action x A
stabiliserInjection action (stab g gx=x) = g
stabiliserInjectionIsHom : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) {x : B} GroupHom (stabiliserGroup action {x}) G (stabiliserInjection action {x})
GroupHom.groupHom (stabiliserInjectionIsHom {S = S} action) {stab g gx=x} {stab h hx=x} = Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq S))
GroupHom.wellDefined (stabiliserInjectionIsHom action) {stab g gx=x} {stab h hx=x} g=h = g=h
stabiliserIsSubgroup : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) {x : B} Subgroup G (stabiliserGroup action) (stabiliserInjectionIsHom action {x})
SetoidInjection.wellDefined (Subgroup.fInj (stabiliserIsSubgroup action)) {stab g gx=x} {stab h hx=x} g=h = g=h
SetoidInjection.injective (Subgroup.fInj (stabiliserIsSubgroup action)) {stab g gx=x} {stab h hx=x} g=h = g=h
orbitStabiliserEquivRel1 : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) Rel A
orbitStabiliserEquivRel1 {T = T} action x g1 g2 = Setoid.__ T (GroupAction.action action g1 x) (GroupAction.action action g2 x)
orbitStabiliserEquivRel2 : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) Rel A
orbitStabiliserEquivRel2 {T = T} {_+_ = _+_} {G = G} action x g1 g2 = Setoid.__ T (GroupAction.action action ((Group.inverse G g2) + g1) x) x
osEquivRel1Equiv : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) Equivalence (orbitStabiliserEquivRel1 action x)
Reflexive.reflexive (Equivalence.reflexiveEq (osEquivRel1Equiv {T = T} action x)) {a} = Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq T))
Symmetric.symmetric (Equivalence.symmetricEq (osEquivRel1Equiv {T = T} action x)) {a} {b} = Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq T))
Transitive.transitive (Equivalence.transitiveEq (osEquivRel1Equiv {T = T} action x)) {a} {b} {c} = Transitive.transitive (Equivalence.transitiveEq (Setoid.eq T))
osEquivRel2Equiv : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) Equivalence (orbitStabiliserEquivRel2 action x)
Reflexive.reflexive (Equivalence.reflexiveEq (osEquivRel2Equiv {T = T} {G = G} action x)) = transitive (GroupAction.actionWellDefined1 action (Group.invLeft G)) (GroupAction.identityAction action)
where
open Transitive (Equivalence.transitiveEq (Setoid.eq T))
Symmetric.symmetric (Equivalence.symmetricEq (osEquivRel2Equiv {S = S} {T = T} {_+_ = _+_} {G = G} gAction x)) {b} {c} b=c = need
where
open Symmetric (Equivalence.symmetricEq (Setoid.eq T))
open Symmetric (Equivalence.symmetricEq (Setoid.eq S)) renaming (symmetric to symmetricS)
open Transitive (Equivalence.transitiveEq (Setoid.eq T))
open Transitive (Equivalence.transitiveEq (Setoid.eq S)) renaming (transitive to transitiveS)
open Reflexive (Equivalence.reflexiveEq (Setoid.eq S)) renaming (reflexive to reflexiveS)
open Setoid T
open GroupAction gAction
open Group G
have : action ((inverse c) + b) x x
have = b=c
p : action (inverse (inverse b + c)) x x
p = transitive (actionWellDefined1 (transitiveS (invContravariant G) (Group.wellDefined G reflexiveS (invInv G)))) have
q : action ((inverse b) + c) (action (inverse (inverse b + c)) x) action ((inverse b) + c) x
q = actionWellDefined2 p
r : action (((inverse b) + c) + (inverse (inverse b + c))) x action ((inverse b) + c) x
r = transitive associativeAction q
s : action identity x action ((inverse b) + c) x
s = transitive (actionWellDefined1 (symmetricS invRight)) r
need : action ((inverse b) + c) x x
need = symmetric (transitive (symmetric identityAction) s)
Transitive.transitive (Equivalence.transitiveEq (osEquivRel2Equiv {S = S} {T = T} {_+_ = _+_} {G = G} gAction x)) {a} {b} {c} a=b b=c = need
where
open Symmetric (Equivalence.symmetricEq (Setoid.eq T))
open Symmetric (Equivalence.symmetricEq (Setoid.eq S)) renaming (symmetric to symmetricS)
open Transitive (Equivalence.transitiveEq (Setoid.eq T))
open Transitive (Equivalence.transitiveEq (Setoid.eq S)) renaming (transitive to transitiveS)
open Reflexive (Equivalence.reflexiveEq (Setoid.eq S)) renaming (reflexive to reflexiveS)
open Setoid T
open GroupAction gAction
open Group G
have1 : action ((inverse c) + b) x x
have1 = b=c
have2 : action ((inverse b) + a) x x
have2 = a=b
p : action ((inverse c) + b) (action (inverse b + a) x) x
p = transitive (actionWellDefined2 have2) have1
q : action ((inverse c + b) + (inverse b + a)) x x
q = transitive associativeAction p
need : action ((inverse c) + a) x x
need = transitive (actionWellDefined1 (transitiveS (wellDefined reflexiveS (transitiveS (symmetricS multIdentLeft) (wellDefined (symmetricS invRight) reflexiveS))) (fourWayAssoc G))) q
osEquivRelsEqual' : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) {g h : A} (orbitStabiliserEquivRel2 action x) g h (orbitStabiliserEquivRel1 action x) g h
osEquivRelsEqual' {S = S} {T = T} {_+_ = _+_} {G = G} action x {g} {h} g=h = need
where
open Setoid T
open Group G
open Symmetric (Equivalence.symmetricEq (Setoid.eq T))
open Symmetric (Equivalence.symmetricEq (Setoid.eq S)) renaming (symmetric to symmetricS)
open Transitive (Equivalence.transitiveEq (Setoid.eq T))
have : (GroupAction.action action ((inverse h) + g) x) x
have = g=h
p : (GroupAction.action action (inverse h) (GroupAction.action action g x)) x
p = transitive (symmetric (GroupAction.associativeAction action)) have
q : (GroupAction.action action h (GroupAction.action action (inverse h) (GroupAction.action action g x))) GroupAction.action action h x
q = GroupAction.actionWellDefined2 action p
r : (GroupAction.action action (h + inverse h) (GroupAction.action action g x)) GroupAction.action action h x
r = transitive (GroupAction.associativeAction action) q
s : (GroupAction.action action identity (GroupAction.action action g x)) GroupAction.action action h x
s = transitive (GroupAction.actionWellDefined1 action (symmetricS (Group.invRight G))) r
need : (GroupAction.action action g x) (GroupAction.action action h x)
need = transitive (symmetric (GroupAction.identityAction action)) s
osEquivRelsEqual : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) {g h : A} (orbitStabiliserEquivRel1 action x) g h (orbitStabiliserEquivRel2 action x) g h
osEquivRelsEqual {T = T} {_+_ = _+_} {G = G} action x {g} {h} g=h = need
where
open Setoid T
open Group G
open Symmetric (Equivalence.symmetricEq (Setoid.eq T))
open Transitive (Equivalence.transitiveEq (Setoid.eq T))
have : (GroupAction.action action g x) (GroupAction.action action h x)
have = g=h
p : GroupAction.action action (inverse h) (GroupAction.action action g x) GroupAction.action action (inverse h) (GroupAction.action action h x)
p = GroupAction.actionWellDefined2 action have
need : (GroupAction.action action ((inverse h) + g) x) x
need = transitive (GroupAction.associativeAction action) (transitive p (transitive (symmetric (GroupAction.associativeAction action)) (transitive (GroupAction.actionWellDefined1 action (Group.invLeft G)) (GroupAction.identityAction action))))
data Orbit {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) : Set (a b c d) where
orbitElt : (g : A) Orbit action x
orbitSetoid : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) Setoid (Orbit action x)
Setoid.__ (orbitSetoid {T = T} action x) (orbitElt a) (orbitElt b) = Setoid.__ T (GroupAction.action action a x) (GroupAction.action action b x)
Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq (orbitSetoid {T = T} action x))) {orbitElt g} = Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq T))
Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq (orbitSetoid {T = T} action x))) {orbitElt g} {orbitElt h} = Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq T))
Transitive.transitive (Equivalence.transitiveEq (Setoid.eq (orbitSetoid {T = T} action x))) {orbitElt g} {orbitElt h} {orbitElt i} = Transitive.transitive (Equivalence.transitiveEq (Setoid.eq T))
orbitStabiliserBijection : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) A ((Stabiliser action x) && Orbit action x)
orbitStabiliserBijection action x g = stab {!g!} {!!} ,, orbitElt g
osBijWellDefined : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) {r s : A} (Setoid.__ S r s) Setoid.__ (directSumSetoid (stabiliserSetoid action x) (orbitSetoid action x)) (orbitStabiliserBijection action x r) (orbitStabiliserBijection action x s)
_&&_.fst (osBijWellDefined action x r~s) = {!!}
_&&_.snd (osBijWellDefined action x r~s) = GroupAction.actionWellDefined1 action r~s
orbitStabiliserTheorem : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) SetoidBijection S (directSumSetoid (stabiliserSetoid action x) (orbitSetoid action x)) (orbitStabiliserBijection action x)
SetoidInjection.wellDefined (SetoidBijection.inj (orbitStabiliserTheorem {S = S} action x)) = osBijWellDefined action x
SetoidInjection.injective (SetoidBijection.inj (orbitStabiliserTheorem {S = S} action x)) {g} {h} (fst ,, gx=hx) = {!!}
SetoidSurjection.wellDefined (SetoidBijection.surj (orbitStabiliserTheorem action x)) = osBijWellDefined action x
SetoidSurjection.surjective (SetoidBijection.surj (orbitStabiliserTheorem action x)) {stab g gx=x ,, orbitElt h} = h , ({!!} ,, {!!})