Files
agdaproofs/Fields/Orders/Total/Archimedean.agda
2020-04-18 17:47:27 +01:00

61 lines
3.0 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import Sets.EquivalenceRelations
open import Numbers.Naturals.Semiring
open import Numbers.Integers.Definition
open import Numbers.Naturals.Order
open import LogicalFormulae
open import Groups.Definition
open import Rings.Orders.Partial.Definition
open import Rings.Orders.Total.Definition
open import Setoids.Orders.Partial.Definition
open import Setoids.Orders.Total.Definition
open import Setoids.Setoids
open import Functions.Definition
open import Rings.Definition
open import Fields.Fields
open import Fields.Orders.Partial.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Fields.Orders.Total.Archimedean {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A A A} {R : Ring S _+_ _*_} {c : _} {_<_ : A A Set c} {pOrder : SetoidPartialOrder S _<_} {F : Field R} (p : PartiallyOrderedField F pOrder) where
open Setoid S
open Equivalence eq
open Ring R
open Group additiveGroup
open import Groups.Lemmas additiveGroup
open import Groups.Cyclic.Definition additiveGroup
open import Groups.Cyclic.DefinitionLemmas additiveGroup
open import Groups.Orders.Archimedean (toGroup R (PartiallyOrderedField.oRing p))
open import Rings.Orders.Partial.Lemmas (PartiallyOrderedField.oRing p)
open import Rings.InitialRing R
open SetoidPartialOrder pOrder
open PartiallyOrderedRing (PartiallyOrderedField.oRing p)
open Field F
ArchimedeanField : Set (a c)
ArchimedeanField = (x : A) (0R < x) Sg (λ n x < (fromN n))
private
lemma : (r : A) (N : ) (positiveEltPower 1R N * r) positiveEltPower r N
lemma r zero = timesZero'
lemma r (succ n) = transitive *DistributesOver+' (+WellDefined identIsIdent (lemma r n))
findBound : (0<1 : 0R < 1R) (r s : A) (N : ) (1R < r) (s < positiveEltPower 1R N) s < positiveEltPower r N
findBound _ r s zero 1<r s<N = s<N
findBound 0<1 r s (succ N) 1<r s<N = <Transitive s<N (<WellDefined (transitive *Commutative identIsIdent) (lemma r (succ N)) (ringCanMultiplyByPositive' (fromNPreservesOrder 0<1 (succIsPositive N)) 1<r))
archFieldToGrp : ((x y : A) 0R < x (x * y) 1R 0R < y) ArchimedeanField Archimedean
archFieldToGrp reciprocalPositive a r s 0<r 0<s with allInvertible r (λ r=0 irreflexive (<WellDefined reflexive r=0 0<r))
... | inv , prInv with a inv (reciprocalPositive r inv 0<r (transitive *Commutative prInv))
... | N , invBound with a s 0<s
... | Ns , nSBound = (Ns *N N) , <WellDefined reflexive (symmetric (elementPowerMultiplies (nonneg Ns) (nonneg N) r)) (findBound (<WellDefined reflexive (transitive *Commutative prInv) (orderRespectsMultiplication 0<r (reciprocalPositive r inv 0<r (transitive *Commutative prInv)))) (positiveEltPower r N) s Ns m nSBound)
where
m : 1R < positiveEltPower r N
m = <WellDefined prInv (lemma r N) (ringCanMultiplyByPositive 0<r invBound)
archToArchField : 0R < 1R Archimedean ArchimedeanField
archToArchField 0<1 arch a 0<a with arch 1R a 0<1 0<a
... | N , pr = N , pr