Files
agdaproofs/Fields/Fields.agda
2019-10-26 10:36:24 +01:00

90 lines
4.0 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Groups
open import Groups.Definition
open import Rings.Definition
open import Rings.Order
open import Rings.Lemmas
open import Setoids.Setoids
open import Setoids.Orders
open import Orders
open import Rings.IntegralDomains
open import Functions
open import Sets.EquivalenceRelations
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Fields.Fields where
record Field {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A A A} {_*_ : A A A} (R : Ring S _+_ _*_) : Set (lsuc m n) where
open Ring R
open Group additiveGroup
open Setoid S
field
allInvertible : (a : A) ((a Group.0G (Ring.additiveGroup R)) False) Sg A (λ t t * a 1R)
nontrivial : (0R 1R) False
orderedFieldIsIntDom : {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} {_*_ : A A A} {_<_ : Rel {_} {c} A} {R : Ring S _+_ _*_} {pOrder : SetoidPartialOrder S _<_} {tOrder : SetoidTotalOrder pOrder} (O : OrderedRing R tOrder) (F : Field R) IntegralDomain R
IntegralDomain.intDom (orderedFieldIsIntDom {S = S} {_*_ = _*_} {R = R} {tOrder = tOrder} O F) {a} {b} ab=0 with SetoidTotalOrder.totality tOrder (Ring.0R R) a
IntegralDomain.intDom (orderedFieldIsIntDom {A = A} {S = S} {_*_ = _*_} {R = R} {pOrder = pOrder} {tOrder = tOrder} O F) {a} {b} ab=0 | inl (inl x) = inr (transitive (transitive (symmetric identIsIdent) (*WellDefined q reflexive)) p')
where
open Setoid S
open Equivalence eq
open Ring R
a!=0 : (a Group.0G additiveGroup) False
a!=0 pr = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<WellDefined pOrder (symmetric pr) reflexive x)
invA : A
invA = underlying (Field.allInvertible F a a!=0)
q : 1R (invA * a)
q with Field.allInvertible F a a!=0
... | invA , pr = symmetric pr
p : invA * (a * b) invA * Group.0G additiveGroup
p = *WellDefined reflexive ab=0
p' : (invA * a) * b Group.0G additiveGroup
p' = transitive (symmetric *Associative) (transitive p (Ring.timesZero R))
IntegralDomain.intDom (orderedFieldIsIntDom {A = A} {S = S} {_*_ = _*_} {R = R} {pOrder = pOrder} {tOrder = tOrder} O F) {a} {b} ab=0 | inl (inr x) = inr (transitive (transitive (symmetric identIsIdent) (*WellDefined q reflexive)) p')
where
open Setoid S
open Equivalence eq
open Ring R
a!=0 : (a Group.0G additiveGroup) False
a!=0 pr = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<WellDefined pOrder reflexive (symmetric pr) x)
invA : A
invA = underlying (Field.allInvertible F a a!=0)
q : 1R (invA * a)
q with Field.allInvertible F a a!=0
... | invA , pr = symmetric pr
p : invA * (a * b) invA * Group.0G additiveGroup
p = *WellDefined reflexive ab=0
p' : (invA * a) * b Group.0G additiveGroup
p' = transitive (symmetric *Associative) (transitive p (Ring.timesZero R))
IntegralDomain.intDom (orderedFieldIsIntDom {S = S} {_*_ = _*_} {R = R} {tOrder = tOrder} O F) {a} {b} ab=0 | inr x = inl (Equivalence.symmetric (Setoid.eq S) x)
IntegralDomain.nontrivial (orderedFieldIsIntDom {S = S} O F) pr = Field.nontrivial F (Equivalence.symmetric (Setoid.eq S) pr)
record Field' {m n : _} : Set (lsuc m lsuc n) where
field
A : Set m
S : Setoid {m} {n} A
_+_ : A A A
_*_ : A A A
R : Ring S _+_ _*_
isField : Field R
encapsulateField : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} (F : Field R) Field'
encapsulateField {A = A} {S = S} {_+_} {_*_} {R} F = record { A = A ; S = S ; _+_ = _+_ ; _*_ = _*_ ; R = R ; isField = F }
{-
record OrderedField {n} {A : Set n} {R : Ring A} (F : Field R) : Set (lsuc n) where
open Field F
field
ord : TotalOrder A
open TotalOrder ord
open Ring R
field
productPos : {a b : A} → (0R < a) → (0R < b) → (0R < (a * b))
orderRespectsAddition : {a b c : A} → (a < b) → (a + c) < (b + c)
-}