Files
agdaproofs/Rings/Orders/Partial/Definition.agda
2019-11-02 18:42:37 +00:00

26 lines
930 B
Agda

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Groups
open import Groups.Definition
open import Numbers.Naturals.Naturals
open import Setoids.Orders
open import Setoids.Setoids
open import Functions
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Rings.Orders.Partial.Definition {n m : _} {A : Set n} {S : Setoid {n} {m} A} {_+_ : A A A} {_*_ : A A A} (R : Ring S _+_ _*_) where
open Ring R
open Group additiveGroup
open Setoid S
record PartiallyOrderedRing {p : _} {_<_ : Rel {_} {p} A} (pOrder : SetoidPartialOrder S _<_) : Set (lsuc n m p) where
field
orderRespectsAddition : {a b : A} (a < b) (c : A) (a + c) < (b + c)
orderRespectsMultiplication : {a b : A} (0R < a) (0R < b) (0R < (a * b))
open SetoidPartialOrder pOrder