mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-14 16:08:39 +00:00
26 lines
930 B
Agda
26 lines
930 B
Agda
{-# OPTIONS --safe --warning=error --without-K #-}
|
|
|
|
open import LogicalFormulae
|
|
open import Groups.Groups
|
|
open import Groups.Definition
|
|
open import Numbers.Naturals.Naturals
|
|
open import Setoids.Orders
|
|
open import Setoids.Setoids
|
|
open import Functions
|
|
open import Sets.EquivalenceRelations
|
|
open import Rings.Definition
|
|
|
|
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
|
|
|
module Rings.Orders.Partial.Definition {n m : _} {A : Set n} {S : Setoid {n} {m} A} {_+_ : A → A → A} {_*_ : A → A → A} (R : Ring S _+_ _*_) where
|
|
|
|
open Ring R
|
|
open Group additiveGroup
|
|
open Setoid S
|
|
|
|
record PartiallyOrderedRing {p : _} {_<_ : Rel {_} {p} A} (pOrder : SetoidPartialOrder S _<_) : Set (lsuc n ⊔ m ⊔ p) where
|
|
field
|
|
orderRespectsAddition : {a b : A} → (a < b) → (c : A) → (a + c) < (b + c)
|
|
orderRespectsMultiplication : {a b : A} → (0R < a) → (0R < b) → (0R < (a * b))
|
|
open SetoidPartialOrder pOrder
|