Files
agdaproofs/Numbers/Naturals/Semiring.agda
2020-01-01 10:14:55 +00:00

44 lines
2.3 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Functions
open import Numbers.Naturals.Definition
open import Numbers.Naturals.Addition
open import Numbers.Naturals.Multiplication
open import Semirings.Definition
open import Monoids.Definition
module Numbers.Naturals.Semiring where
open Numbers.Naturals.Definition using ( ; zero ; succ ; succInjective ; naughtE) public
open Numbers.Naturals.Addition using (_+N_ ; canSubtractFromEqualityRight ; canSubtractFromEqualityLeft) public
open Numbers.Naturals.Multiplication using (_*N_ ; multiplicationNIsCommutative) public
Semiring : Semiring 0 1 _+N_ _*N_
Monoid.associative (Semiring.monoid Semiring) a b c = equalityCommutative (additionNIsAssociative a b c)
Monoid.idLeft (Semiring.monoid Semiring) _ = refl
Monoid.idRight (Semiring.monoid Semiring) a = additionNIsCommutative a 0
Semiring.commutative Semiring = additionNIsCommutative
Monoid.associative (Semiring.multMonoid Semiring) = multiplicationNIsAssociative
Monoid.idLeft (Semiring.multMonoid Semiring) a = additionNIsCommutative a 0
Monoid.idRight (Semiring.multMonoid Semiring) a = transitivity (multiplicationNIsCommutative a 1) (additionNIsCommutative a 0)
Semiring.productZeroLeft Semiring _ = refl
Semiring.productZeroRight Semiring a = multiplicationNIsCommutative a 0
Semiring.+DistributesOver* Semiring = productDistributes
Semiring.+DistributesOver*' Semiring a b c rewrite multiplicationNIsCommutative (a +N b) c | multiplicationNIsCommutative a c | multiplicationNIsCommutative b c = productDistributes c a b
succExtracts : (x y : ) (x +N succ y) (succ (x +N y))
succExtracts x y = transitivity (Semiring.commutative Semiring x (succ y)) (applyEquality succ (Semiring.commutative Semiring y x))
productZeroImpliesOperandZero : {a b : } a *N b 0 (a 0) || (b 0)
productZeroImpliesOperandZero {zero} {b} pr = inl refl
productZeroImpliesOperandZero {succ a} {zero} pr = inr refl
productZeroImpliesOperandZero {succ a} {succ b} ()
*NWellDefined : {a b c d : } (a c) (b d) a *N b c *N d
*NWellDefined refl refl = refl
+NWellDefined : {a b c d : } (a c) (b d) a +N b c +N d
+NWellDefined refl refl = refl