Files
agdaproofs/Groups/Subgroups/Examples.agda
2020-01-01 10:14:55 +00:00

37 lines
1.3 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Functions
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Naturals
open import Groups.Definition
module Groups.Subgroups.Examples {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} (G : Group S _+_) where
open import Groups.Subgroups.Definition G
open import Groups.Lemmas G
open Group G
open Setoid S
open Equivalence eq
trivialSubgroupPred : A Set b
trivialSubgroupPred a = (a 0G)
trivialSubgroup : Subgroup trivialSubgroupPred
Subgroup.isSubset trivialSubgroup x=y x=0 = transitive (symmetric x=y) x=0
Subgroup.closedUnderPlus trivialSubgroup x=0 y=0 = transitive (+WellDefined x=0 y=0) identLeft
Subgroup.containsIdentity trivialSubgroup = reflexive
Subgroup.closedUnderInverse trivialSubgroup x=0 = transitive (inverseWellDefined x=0) invIdent
improperSubgroupPred : A Set
improperSubgroupPred a = True
improperSubgroup : Subgroup improperSubgroupPred
Subgroup.isSubset improperSubgroup _ _ = record {}
Subgroup.closedUnderPlus improperSubgroup _ _ = record {}
Subgroup.containsIdentity improperSubgroup = record {}
Subgroup.closedUnderInverse improperSubgroup _ = record {}