Files
agdaproofs/Groups/Isomorphisms/Definition.agda
2020-01-01 10:14:55 +00:00

25 lines
1.1 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Functions
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Naturals
open import Groups.Definition
open import Groups.Homomorphisms.Definition
open import Sets.EquivalenceRelations
module Groups.Isomorphisms.Definition where
record GroupIso {m n o p : _} {A : Set m} {S : Setoid {m} {o} A} {_·A_ : A A A} {B : Set n} {T : Setoid {n} {p} B} {_·B_ : B B B} (G : Group S _·A_) (H : Group T _·B_) (f : A B) : Set (m n o p) where
open Setoid S renaming (__ to _G_)
open Setoid T renaming (__ to _H_)
field
groupHom : GroupHom G H f
bij : SetoidBijection S T f
record GroupsIsomorphic {m n o p : _} {A : Set m} {S : Setoid {m} {o} A} {_·A_ : A A A} {B : Set n} {T : Setoid {n} {p} B} {_·B_ : B B B} (G : Group S _·A_) (H : Group T _·B_) : Set (m n o p) where
field
isomorphism : A B
proof : GroupIso G H isomorphism