Files
agdaproofs/Groups/ActionIsSymmetry.agda
2019-09-28 22:24:41 +01:00

39 lines
2.7 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Functions
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Naturals
open import Sets.FinSet
open import Groups.Definition
open import Groups.Lemmas
open import Groups.Groups
open import Groups.SymmetryGroups
open import Groups.Groups2
open import Groups.Actions
module Groups.ActionIsSymmetry where
actionPermutation : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (g : A) SymmetryGroupElements T
actionPermutation {B = B} {T = T} {_+_ = _+_} {G = G} action g = sym {f = λ x (GroupAction.action action g x)} (record { inj = record { injective = inj ; wellDefined = GroupAction.actionWellDefined2 action } ; surj = record { surjective = surj ; wellDefined = GroupAction.actionWellDefined2 action } })
where
open Setoid T
open Reflexive (Equivalence.reflexiveEq (Setoid.eq T))
open Symmetric (Equivalence.symmetricEq (Setoid.eq T))
open Transitive (Equivalence.transitiveEq (Setoid.eq T))
open Group G
inj : {x y : B} (Setoid.__ T (GroupAction.action action g x) (GroupAction.action action g y)) Setoid.__ T x y
inj {x} {y} gx=gy = transitive (symmetric (GroupAction.identityAction action)) (transitive (transitive (symmetric (GroupAction.actionWellDefined1 action (invLeft {g}))) (transitive (transitive (GroupAction.associativeAction action) (transitive (GroupAction.actionWellDefined2 action gx=gy) (symmetric (GroupAction.associativeAction action)))) (GroupAction.actionWellDefined1 action (invLeft {g})))) (GroupAction.identityAction action))
surj : {x : B} Sg B (λ a GroupAction.action action g a x)
surj {x} = GroupAction.action action (inverse g) x , transitive (symmetric (GroupAction.associativeAction action)) (transitive (GroupAction.actionWellDefined1 action invRight) (GroupAction.identityAction action))
actionPermutationMapIsHom : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) GroupHom G (symmetricGroup T) (actionPermutation action)
GroupHom.groupHom (actionPermutationMapIsHom {T = T} action) = ExtensionallyEqual.eq λ {z} GroupAction.associativeAction action
where
open Setoid T
open Reflexive (Equivalence.reflexiveEq (Setoid.eq T))
open Symmetric (Equivalence.symmetricEq (Setoid.eq T))
open Transitive (Equivalence.transitiveEq (Setoid.eq T))
GroupHom.wellDefined (actionPermutationMapIsHom action) x=y = ExtensionallyEqual.eq λ {z} GroupAction.actionWellDefined1 action x=y