Files
agdaproofs/Rings/Associates/Lemmas.agda
2020-01-05 15:06:35 +00:00

42 lines
3.3 KiB
Agda
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Rings.IntegralDomains.Definition
module Rings.Associates.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A A A} {R : Ring S _+_ _*_} (intDom : IntegralDomain R) where
open import Rings.Divisible.Definition R
open import Rings.IntegralDomains.Lemmas intDom
open import Rings.Associates.Definition intDom
open import Rings.Ideals.Definition R
open Setoid S
open Ring R
open Equivalence eq
associatesEquiv : Equivalence Associates
Equivalence.reflexive associatesEquiv {x} = 1R , ((1R , identIsIdent) ,, symmetric (transitive *Commutative identIsIdent))
Equivalence.symmetric associatesEquiv {x} {y} (a , ((invA , prInv) ,, x=ya)) = invA , ((a , transitive *Commutative prInv) ,, transitive (symmetric identIsIdent) (transitive (*WellDefined (symmetric prInv) reflexive) (transitive *Commutative (transitive *Associative (*WellDefined (symmetric x=ya) reflexive)))))
Equivalence.transitive associatesEquiv {x} {y} {z} (a , ((invA , prInvA) ,, x=ya)) (b , ((invB , prInvB) ,, y=zb)) = (a * b) , (((invA * invB) , transitive *Associative (transitive (*WellDefined (transitive *Commutative *Associative) reflexive) (transitive (symmetric *Associative) (transitive (*WellDefined (transitive *Commutative prInvA) prInvB) identIsIdent)))) ,, transitive x=ya (transitive (*WellDefined y=zb reflexive) (transitive (symmetric *Associative) (*WellDefined reflexive *Commutative))))
associateImpliesMutualDivision : {a b : A} Associates a b a b
associateImpliesMutualDivision {a} {b} (x , ((invX , prInvX) ,, a=bx)) = invX , transitive (transitive (*WellDefined a=bx reflexive) (transitive (transitive (symmetric *Associative) (*WellDefined reflexive prInvX)) *Commutative)) identIsIdent
mutualDivisionImpliesAssociate : {a b : A} (a b) (b a) ((a 0R) False) Associates a b
mutualDivisionImpliesAssociate {a} {b} (r , ar=b) (s , bs=a) a!=0 = s , ((r , cancelIntDom {a = a} (transitive (transitive (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (*WellDefined ar=b reflexive))) bs=a) (transitive (symmetric identIsIdent) *Commutative)) a!=0) ,, symmetric bs=a)
mutualDivisionImpliesAssociate' : {a b : A} (a b) (b a) (a 0R) Associates a b
mutualDivisionImpliesAssociate' {a} {b} (r , ar=b) (s , bs=a) a=0 = 1R , ((1R , identIsIdent) ,, transitive a=0 (symmetric (transitive (*WellDefined b=0 reflexive) (transitive *Commutative timesZero))))
where
b=0 : b 0R
b=0 = transitive (symmetric ar=b) (transitive (transitive *Commutative (*WellDefined reflexive a=0)) (timesZero {r}))
associateImpliesGeneratedIdealsEqual : {a b : A} Associates a b {x : A} generatedIdealPred a x generatedIdealPred b x
associateImpliesGeneratedIdealsEqual {a} {b} (r , ((s , rs=1) ,, a=br)) {x} (c , ac=x) = (r * c) , transitive *Associative (transitive (*WellDefined (symmetric a=br) reflexive) ac=x)
associateImpliesGeneratedIdealsEqual' : {a b : A} Associates a b {x : A} generatedIdealPred b x generatedIdealPred a x
associateImpliesGeneratedIdealsEqual' assoc = associateImpliesGeneratedIdealsEqual (Equivalence.symmetric associatesEquiv assoc)