mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-10 14:18:41 +00:00
21 lines
955 B
Agda
21 lines
955 B
Agda
{-# OPTIONS --safe --warning=error --without-K #-}
|
||
|
||
open import Setoids.Setoids
|
||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||
open import Groups.Definition
|
||
open import Groups.Homomorphisms.Definition
|
||
|
||
module Groups.Isomorphisms.Definition where
|
||
|
||
record GroupIso {m n o p : _} {A : Set m} {S : Setoid {m} {o} A} {_·A_ : A → A → A} {B : Set n} {T : Setoid {n} {p} B} {_·B_ : B → B → B} (G : Group S _·A_) (H : Group T _·B_) (f : A → B) : Set (m ⊔ n ⊔ o ⊔ p) where
|
||
open Setoid S renaming (_∼_ to _∼G_)
|
||
open Setoid T renaming (_∼_ to _∼H_)
|
||
field
|
||
groupHom : GroupHom G H f
|
||
bij : SetoidBijection S T f
|
||
|
||
record GroupsIsomorphic {m n o p : _} {A : Set m} {S : Setoid {m} {o} A} {_·A_ : A → A → A} {B : Set n} {T : Setoid {n} {p} B} {_·B_ : B → B → B} (G : Group S _·A_) (H : Group T _·B_) : Set (m ⊔ n ⊔ o ⊔ p) where
|
||
field
|
||
isomorphism : A → B
|
||
proof : GroupIso G H isomorphism
|