Files
agdaproofs/Groups/FreeProduct/Group.agda
2020-04-18 19:56:11 +01:00

169 lines
21 KiB
Agda
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error #-}
open import Sets.EquivalenceRelations
open import Functions.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_; Setω)
open import Setoids.Setoids
open import Groups.Definition
open import LogicalFormulae
open import Orders.WellFounded.Definition
open import Numbers.Naturals.Semiring
open import Groups.Lemmas
module Groups.FreeProduct.Group {i : _} {I : Set i} (decidableIndex : (x y : I) ((x y) || ((x y) False))) {a b : _} {A : I Set a} {S : (i : I) Setoid {a} {b} (A i)} {_+_ : (i : I) (A i) (A i) A i} (decidableGroups : (i : I) (x y : A i) ((Setoid.__ (S i) x y)) || ((Setoid.__ (S i) x y) False)) (G : (i : I) Group (S i) (_+_ i)) where
open import Groups.FreeProduct.Definition decidableIndex decidableGroups G
open import Groups.FreeProduct.Setoid decidableIndex decidableGroups G
open import Groups.FreeProduct.Addition decidableIndex decidableGroups G
private
plus'WDlemm : {i : I} (x1 x2 : ReducedSequenceBeginningWith i) (y : ReducedSequence) (=RP' x1 x2) plus' x1 y =RP plus' x2 y
plus'WDlemm (ofEmpty i g nonZero) (ofEmpty .i g₁ nonZero₁) y x1=x2 with decidableIndex i i
plus'WDlemm (ofEmpty i g nonZero) (ofEmpty .i h nonZero2) y x1=x2 | inl refl = prependWD g h nonZero nonZero2 y x1=x2
plus'WDlemm (prependLetter i g nonZero {j} x1 x) (prependLetter .i h nonZero2 {j2} x2 pr) y x1=x2 with decidableIndex i i
... | inl refl with decidableIndex j j2
plus'WDlemm (prependLetter i g nonZero {j} x1 x) (prependLetter .i h nonZero2 {.j} x2 pr) y x1=x2 | inl refl | inl refl = Equivalence.transitive (Setoid.eq freeProductSetoid) {prepend i g nonZero (plus' x1 y)} {prepend i h nonZero2 (plus' x1 y)} {plus' (prependLetter i h nonZero2 x2 pr) y} (prependWD g h nonZero nonZero2 (plus' x1 y) (_&&_.fst x1=x2)) (prependWD' h nonZero2 (plus' x1 y) (plus' x2 y) (plus'WDlemm x1 x2 y (_&&_.snd x1=x2)))
... | inr j!=j2 = exFalso (notEqualIfStartDifferent j!=j2 x1 x2 (_&&_.snd x1=x2))
plus'WDlemm _ _ _ _ | inr bad = exFalso (bad refl)
plus'WD : {i j : I} (x1 : ReducedSequenceBeginningWith i) (x2 : ReducedSequenceBeginningWith j) (y : ReducedSequence) (=RP' x1 x2) plus' x1 y =RP plus' x2 y
plus'WD {i} {j} x1 x2 y x1=x2 with decidableIndex i j
plus'WD {i} {.i} x1 x2 y x1=x2 | inl refl = plus'WDlemm x1 x2 y x1=x2
plus'WD {i} {j} x1 x2 y x1=x2 | inr x = exFalso (notEqualIfStartDifferent x x1 x2 x1=x2)
plusWD : (m n o p : ReducedSequence) (m =RP o) (n =RP p) (m +RP n) =RP (o +RP p)
plusWD empty empty empty empty m=o n=p = record {}
plusWD empty (nonempty i x) empty (nonempty i₁ x₁) m=o n=p = n=p
plusWD (nonempty i x) empty (nonempty j y) empty m=o record {} = Equivalence.transitive (Setoid.eq freeProductSetoid) {plus' x empty} {nonempty i x} {plus' y empty} (plusEmptyRight x) (Equivalence.transitive (Setoid.eq freeProductSetoid) {nonempty i x} {nonempty j y} {plus' y empty} m=o (Equivalence.symmetric (Setoid.eq freeProductSetoid) {plus' y empty} {nonempty j y} (plusEmptyRight y)))
plusWD (nonempty i1 x1) (nonempty i2 x2) (nonempty i3 x3) (nonempty i4 x4) m=o n=p = (Equivalence.transitive (Setoid.eq freeProductSetoid)) {plus' x1 (nonempty i2 x2)} {plus' x3 (nonempty i2 x2)} {plus' x3 (nonempty i4 x4)} (plus'WD x1 x3 (nonempty i2 x2) m=o) (plus'WD' x3 (nonempty i2 x2) (nonempty i4 x4) n=p)
prependAssocLemma' : {i : I} {g : A i} .(nz : Setoid.__ (S i) g (Group.0G (G i)) False) (b c : ReducedSequence) (prepend i g nz b +RP c) =RP prepend i g nz (b +RP c)
prependAssocLemma' {i} {g} nz empty c = Equivalence.reflexive (Setoid.eq freeProductSetoid) {prepend i g _ c}
prependAssocLemma' {i} nz (nonempty k x) c with decidableIndex i k
prependAssocLemma' {.k} {g1} nz (nonempty k (ofEmpty .k g nonZero)) c | inl refl with decidableGroups k ((k + g1) g) (Group.0G (G k))
prependAssocLemma' {.k} {g1} nz (nonempty k (ofEmpty .k g nonZero)) c | inl refl | inl eq1 = Equivalence.symmetric (Setoid.eq freeProductSetoid) {prepend k g1 _ (prepend k g _ c)} {c} (prependFrom' g1 g eq1 c nz nonZero)
prependAssocLemma' {.k} {g1} nz (nonempty k (ofEmpty .k g nonZero)) c | inl refl | inr neq1 = (prependFrom g1 g neq1 c nz nonZero)
prependAssocLemma' {.k} {g1} nz (nonempty k (prependLetter .k g nonZero x x₁)) c | inl refl with decidableGroups k ((k + g1) g) (Group.0G (G k))
prependAssocLemma' {.k} {g1} nz (nonempty k (prependLetter .k g nonZero x x₁)) c | inl refl | inl eq1 = Equivalence.symmetric (Setoid.eq freeProductSetoid) {prepend k g1 _ (prepend k g _ (plus' x c))} {plus' x c} (prependFrom' g1 g eq1 (plus' x c) nz nonZero)
prependAssocLemma' {.k} {g1} nz (nonempty k (prependLetter .k g nonZero x x₁)) c | inl refl | inr neq1 = prependFrom g1 g neq1 (plus' x c) nz nonZero
prependAssocLemma' {i} {g} nz (nonempty k x) c | inr i!=k = Equivalence.reflexive (Setoid.eq freeProductSetoid) {prepend i g _ (plus' x c)}
plusAssocLemma : {i : I} (x : ReducedSequenceBeginningWith i) (b c : ReducedSequence) (plus' x b +RP c) =RP plus' x (b +RP c)
plusAssocLemma (ofEmpty i g nonZero) empty c = Equivalence.reflexive (Setoid.eq freeProductSetoid) {prepend i g _ c}
plusAssocLemma (ofEmpty i g nonZero) (nonempty j b) c with decidableIndex i j
plusAssocLemma (ofEmpty i g nonZero) (nonempty .i (ofEmpty .i g₁ nonZero₁)) c | inl refl with decidableIndex i i
plusAssocLemma (ofEmpty i g nonZero) (nonempty .i (ofEmpty .i h nonZero₁)) c | inl refl | inl refl with decidableGroups i ((i + g) h) (Group.0G (G i))
plusAssocLemma (ofEmpty i g nonZero) (nonempty .i (ofEmpty .i h nonZero₁)) c | inl refl | inl refl | inl t = Equivalence.symmetric (Setoid.eq freeProductSetoid) {prepend i g _ (prepend i h _ c)} {c} (prependFrom' g h t c _ _)
plusAssocLemma (ofEmpty i g nonZero) (nonempty .i (ofEmpty .i h nonZero₁)) c | inl refl | inl refl | inr t = prependFrom g h t c _ _
plusAssocLemma (ofEmpty i g nonZero) (nonempty .i (ofEmpty .i g₁ nonZero₁)) c | inl refl | inr bad = exFalso (bad refl)
plusAssocLemma (ofEmpty i g nonZero) (nonempty .i (prependLetter .i h nonZero₁ b x)) c | inl refl with decidableGroups i ((i + g) h) (Group.0G (G i))
plusAssocLemma (ofEmpty i g nonZero) (nonempty .i (prependLetter .i h nonZero₁ b x)) c | inl refl | inl eq1 = Equivalence.symmetric (Setoid.eq freeProductSetoid) {prepend i g _ (prepend i h _ (plus' b c))} {plus' b c} (prependFrom' g h eq1 (plus' b c) _ _)
plusAssocLemma (ofEmpty i g nonZero) (nonempty .i (prependLetter .i h nonZero₁ b x)) c | inl refl | inr neq1 = prependFrom g h neq1 (plus' b c) nonZero _
plusAssocLemma (ofEmpty i g nonZero) (nonempty j b) c | inr i!=j = Equivalence.reflexive (Setoid.eq freeProductSetoid) {prepend i g _ (plus' b c)}
plusAssocLemma (prependLetter i g nonZero {j} w i!=j) b c = Equivalence.transitive (Setoid.eq freeProductSetoid) {prepend i g _ (plus' w b) +RP c} {prepend i g _ (plus' w b +RP c)} {prepend i g _ (plus' w (b +RP c))} (prependAssocLemma' nonZero (plus' w b) c) (prependWD' g nonZero (plus' w b +RP c) (plus' w (b +RP c)) (plusAssocLemma w b c))
plusAssoc : (a b c : ReducedSequence) ((a +RP b) +RP c) =RP (a +RP (b +RP c))
plusAssoc empty b c = Equivalence.reflexive (Setoid.eq freeProductSetoid) {b +RP c}
plusAssoc (nonempty i x) b c = plusAssocLemma x b c
private
inv' : {i : I} (x : ReducedSequenceBeginningWith i) ReducedSequence
inv' (ofEmpty i g nonZero) = nonempty i (ofEmpty i (Group.inverse (G i) g) (λ pr nonZero (Equivalence.transitive (Setoid.eq (S i)) (swapInv (G i) pr) (invIdent (G i)))))
inv' (prependLetter i g nonZero {j} w i!=j) = (inv' w) +RP injection (Group.inverse (G i) g) (λ pr nonZero (Equivalence.transitive (Setoid.eq (S i)) (swapInv (G i) pr) (invIdent (G i))))
inv : (x : ReducedSequence) ReducedSequence
inv empty = empty
inv (nonempty i w) = inv' w
private
abstract
lemma1 : {i j k : I} (i!=j : (i j) False) (g : A i) (h : A j) (w : ReducedSequenceBeginningWith k) (j!=k : (j k) False) .(pr : _) .(pr2 : _) .(pr3 : _) (prepend i (Group.inverse (G i) g) pr (nonempty i (prependLetter i g pr2 (prependLetter j h pr3 w j!=k) i!=j))) =RP nonempty j (prependLetter j h pr3 w j!=k)
lemma1 {i} {j} {k} i!=j g h r j!=k pr pr2 pr3 with decidableIndex i i
... | inr x = exFalso (x refl)
lemma1 {i} {j} {k} i!=j g h r j!=k pr pr2 pr3 | inl refl with decidableGroups i ((i + Group.inverse (G i) g) g) (Group.0G (G i))
... | inr bad = exFalso (bad (Group.invLeft (G i)))
lemma1 {i} {j} {k} i!=j g h r j!=k pr pr2 pr3 | inl refl | inl eq1 with decidableIndex j j
... | inr bad = exFalso (bad refl)
... | inl refl = Equivalence.reflexive (Setoid.eq (S j)) ,, =RP'reflex r
abstract
lemma2 : {j k : I} (j!=k : (j k) False) (h : A j) (w : ReducedSequenceBeginningWith k) .(pr : _) .(pr2 : _) (prepend j (Group.inverse (G j) h) pr (nonempty j (prependLetter j h pr2 w j!=k))) =RP (nonempty k w)
lemma2 {j} {k} j!=k h r pr pr2 with decidableIndex j j
... | inr bad = exFalso (bad refl)
lemma2 {j} {k} j!=k h r pr pr2 | inl refl with decidableGroups j ((j + Group.inverse (G j) h) h) (Group.0G (G j))
... | inr bad = exFalso (bad (Group.invLeft (G j)))
... | inl x = =RP'reflex r
abstract
unpeel : (k : ReducedSequence) {j : I} (g : A j) .(pr : _) .(pr2 : _) k =RP empty (prepend j g pr (k +RP (nonempty j (ofEmpty j (Group.inverse (G j) g) pr2)))) =RP empty
unpeel empty {j} g pr pr2 x with decidableIndex j j
... | inr bad = exFalso (bad refl)
unpeel empty {j} g pr pr2 x | inl refl with decidableGroups j ((j + g) (Group.inverse (G j) g)) (Group.0G (G j))
... | inl _ = record {}
... | inr bad = exFalso (bad (Group.invRight (G j)))
abstract
invRight' : {i : I} (x : ReducedSequenceBeginningWith i) ((nonempty i x) +RP inv (nonempty i x)) =RP empty
invRight' {i} (ofEmpty _ g nonZero) with decidableIndex i i
... | inr x = exFalso (x refl)
invRight' {i} (ofEmpty _ g nonZero) | inl refl with decidableGroups i ((i + g) (Group.inverse (G i) g)) (Group.0G (G i))
... | inr x = exFalso (x (Group.invRight (G i)))
... | inl x = record {}
invRight' {j} (prependLetter _ g nonZero {k} (ofEmpty .k h nonZero1) j!=k) with decidableIndex k j
... | inl x = exFalso (j!=k (equalityCommutative x))
invRight' {j} (prependLetter _ g nonZero {k} (ofEmpty .k h nonZero1) j!=k) | inr _ with decidableIndex k k
... | inr x = exFalso (x refl)
invRight' {j} (prependLetter _ g nonZero {k} (ofEmpty .k h nonZero1) j!=k) | inr _ | inl refl with decidableGroups k ((k + h) (Group.inverse (G k) h)) (Group.0G (G k))
... | inr x = exFalso (x (Group.invRight (G k)))
invRight' {j} (prependLetter _ g nonZero {k} (ofEmpty .k h nonZero1) j!=k) | inr _ | inl refl | inl _ with decidableIndex j j
... | inr x = exFalso (x refl)
invRight' {j} (prependLetter _ g nonZero {k} (ofEmpty .k h nonZero1) j!=k) | inr _ | inl refl | inl _ | inl refl with decidableGroups j ((j + g) (Group.inverse (G j) g)) (Group.0G (G j))
... | inr bad = exFalso (bad (Group.invRight (G j)))
... | inl r = record {}
invRight' {j} (prependLetter _ g nonZero {k} (prependLetter .k h nonZero1 {i} x k!=i) j!=k) rewrite refl {x = 0} = Equivalence.transitive (Setoid.eq freeProductSetoid) {prepend j g _ (prepend k h _ (plus' x ((inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) _)) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) _))))} {prepend j g nonZero (prepend k h nonZero1 (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t nonZero1 (invZeroImpliesZero (G k) t)))) +RP (nonempty j (ofEmpty j (Group.inverse (G j) g) λ t nonZero (invZeroImpliesZero (G j) t))))} {empty} (prependWD' g nonZero (prepend k h nonZero1 (plus' x ((inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) _)) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) λ t nonZero (invZeroImpliesZero (G j) t))))) (prepend k h _ (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t nonZero1 (invZeroImpliesZero (G k) t)))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) λ i nonZero (invZeroImpliesZero (G j) i))) (Equivalence.symmetric (Setoid.eq freeProductSetoid) {(prepend k h _ (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) _))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) _))} {prepend k h _ (plus' x ((inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) _)) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) _)))} t)) (unpeel (prepend k h nonZero1 (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) _)))) g nonZero (λ t nonZero (invZeroImpliesZero (G j) t)) (Equivalence.transitive (Setoid.eq freeProductSetoid) {prepend k h nonZero1 (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t nonZero1 (invZeroImpliesZero (G k) t))))} {prepend k h nonZero1 ((plus' x (inv' x)) +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t nonZero1 (invZeroImpliesZero (G k) t)))} {empty} (prependWD' h nonZero1 (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t nonZero1 (invZeroImpliesZero (G k) t)))) (plus' x (inv' x) +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t nonZero1 (invZeroImpliesZero (G k) t))) (Equivalence.symmetric (Setoid.eq freeProductSetoid) {plus' x (inv' x) +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t nonZero1 (invZeroImpliesZero (G k) t))} (plusAssoc (nonempty _ x) (inv' x) (nonempty k (ofEmpty k (Group.inverse (G k) h) (λ t nonZero1 (invZeroImpliesZero (G k) t))))))) (unpeel (plus' x (inv' x)) h nonZero1 (λ t nonZero1 (invZeroImpliesZero (G k) t)) (invRight' x))))
where
t : (prepend k h nonZero1 (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) (λ t nonZero1 (invZeroImpliesZero (G _) t))))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) (λ t nonZero (invZeroImpliesZero (G j) t)))) =RP (prepend k h nonZero1 (plus' x ((inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) (λ t nonZero1 (invZeroImpliesZero (G _) t)))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) (λ t nonZero (invZeroImpliesZero (G j) t))))))
t = Equivalence.transitive (Setoid.eq freeProductSetoid) {(prepend k h nonZero1 (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) (λ t nonZero1 (invZeroImpliesZero (G _) t))))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) (λ t nonZero (invZeroImpliesZero (G j) t))))} {prepend k h _ (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t nonZero1 (invZeroImpliesZero (G _) t))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) λ t nonZero (invZeroImpliesZero (G _) t)))} {(prepend k h nonZero1 (plus' x ((inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) (λ t nonZero1 (invZeroImpliesZero (G _) t)))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) (λ t nonZero (invZeroImpliesZero (G j) t))))))} (prependAssocLemma' {k} {h} nonZero1 (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) _))) (nonempty j (ofEmpty j (Group.inverse (G j) g) _))) (prependWD' h nonZero1 (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t nonZero1 (invZeroImpliesZero (G _) t))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) λ t nonZero (invZeroImpliesZero (G _) t))) (plus' x ((inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t nonZero1 (invZeroImpliesZero (G _) t))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) λ t nonZero (invZeroImpliesZero (G _) t)))) (plusAssocLemma x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t nonZero1 (invZeroImpliesZero (G _) t))) (nonempty j (ofEmpty j (Group.inverse (G j) g) λ t nonZero (invZeroImpliesZero (G _) t)))))
abstract
invRight : (x : ReducedSequence) (x +RP (inv x)) =RP empty
invRight empty = record {}
invRight (nonempty i w) = invRight' {i} w
abstract
invLeft' : {i : I} (x : ReducedSequenceBeginningWith i) (inv (nonempty i x) +RP (nonempty i x)) =RP empty
invLeft' {i} (ofEmpty .i g nonZero) with decidableIndex i i
invLeft' {i} (ofEmpty .i g nonZero) | inl refl with decidableGroups i ((i + Group.inverse (G i) g) g) (Group.0G (G i))
... | inl good = record {}
... | inr bad = exFalso (bad (Group.invLeft (G i) {g}))
invLeft' {i} (ofEmpty .i g nonZero) | inr x = exFalso (x refl)
invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j g₁ nonZero₁) i!=j) with decidableIndex j i
... | inl pr = exFalso (i!=j (equalityCommutative pr))
invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j g₁ nonZero₁) i!=j) | inr pr with decidableIndex i i
invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j g₁ nonZero₁) i!=j) | inr pr | inl refl with decidableGroups i ((i + Group.inverse (G i) g) g) (Group.0G (G i))
invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j g₁ nonZero₁) i!=j) | inr pr | inl refl | inl k with decidableIndex j j
invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j h nonZero₁) i!=j) | inr pr | inl refl | inl k | inl refl with decidableGroups j ((j + Group.inverse (G j) h) h) (Group.0G (G j))
invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j h nonZero₁) i!=j) | inr pr | inl refl | inl k | inl refl | inl good = record {}
invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j h nonZero₁) i!=j) | inr pr | inl refl | inl k | inl refl | inr bad = exFalso (bad (Group.invLeft (G j)))
invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j g₁ nonZero₁) i!=j) | inr pr | inl refl | inl k | inr bad = exFalso (bad refl)
invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j g₁ nonZero₁) i!=j) | inr pr | inl refl | inr k = exFalso (k (Group.invLeft (G i) {g}))
invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j g₁ nonZero₁) i!=j) | inr pr | inr bad = exFalso (bad refl)
invLeft' {i} (prependLetter .i g nonZero {.j} (prependLetter j h nonZero1 {k} w x) i!=j) = Equivalence.transitive (Setoid.eq freeProductSetoid) {(((inv' w +RP nonempty j (ofEmpty j (Group.inverse (G j) h) _)) +RP nonempty i (ofEmpty i (Group.inverse (G i) g) _)) +RP nonempty i (prependLetter i g _ (prependLetter j h _ w x) i!=j))} {_} {empty} (plusAssoc (inv' w +RP nonempty j (ofEmpty j (Group.inverse (G j) h) _)) (nonempty i (ofEmpty i (Group.inverse (G i) g) _)) (nonempty i (prependLetter i g _ (prependLetter j h _ w x) i!=j))) (Equivalence.transitive (Setoid.eq freeProductSetoid) {((inv' w +RP nonempty j (ofEmpty j (Group.inverse (G j) h) _)) +RP (prepend i (Group.inverse (G i) g) _ (nonempty i (prependLetter i g _ (prependLetter j h _ w x) i!=j))))} {(inv' w +RP nonempty j (ofEmpty j (Group.inverse (G j) h) _)) +RP (nonempty j (prependLetter j h nonZero1 w x))} {empty} (plusWD (inv' w +RP nonempty j (ofEmpty j (Group.inverse (G j) h) _)) (prepend i (Group.inverse (G i) g) _ (nonempty i (prependLetter i g _ (prependLetter j h _ w x) i!=j))) (inv' w +RP nonempty j (ofEmpty j (Group.inverse (G j) h) _)) (nonempty j (prependLetter j h _ w x)) (Equivalence.reflexive (Setoid.eq freeProductSetoid) {inv' w +RP nonempty j (ofEmpty j (Group.inverse (G j) h) _)}) (lemma1 {i} {j} {k} i!=j g h w x (λ p nonZero (invZeroImpliesZero (G i) p)) nonZero nonZero1)) (Equivalence.transitive (Setoid.eq freeProductSetoid) {(inv' w +RP nonempty j (ofEmpty j (Group.inverse (G j) h) _)) +RP nonempty j (prependLetter j h _ w x)} {inv' w +RP (nonempty j (ofEmpty j (Group.inverse (G j) h) λ p nonZero1 (invZeroImpliesZero (G j) p)) +RP nonempty j (prependLetter j h nonZero1 w x))} {empty} (plusAssoc (inv' w) (nonempty j (ofEmpty j (Group.inverse (G j) h) _)) (nonempty j (prependLetter j h _ w x))) (Equivalence.transitive (Setoid.eq freeProductSetoid) {inv' w +RP (prepend j (Group.inverse (G j) h) _ (nonempty j (prependLetter j h nonZero1 w x)))} {inv' w +RP (nonempty k w)} {empty} (plusWD (inv' w) (prepend j (Group.inverse (G j) h) _ (nonempty j (prependLetter j h nonZero1 w x))) (inv' w) (nonempty k w) (Equivalence.reflexive (Setoid.eq freeProductSetoid) {inv' w}) (lemma2 {j} {k} x h w (λ p nonZero1 (invZeroImpliesZero (G j) p)) nonZero1)) (invLeft' {k} w))))
abstract
invLeft : (x : ReducedSequence) ((inv x) +RP x) =RP empty
invLeft empty = record {}
invLeft (nonempty i w) = invLeft' {i} w
FreeProductGroup : Group freeProductSetoid _+RP_
Group.+WellDefined FreeProductGroup {m} {n} {x} {y} m=x n=y = plusWD m n x y m=x n=y
Group.0G FreeProductGroup = empty
Group.inverse FreeProductGroup = inv
Group.+Associative FreeProductGroup {a} {b} {c} = Equivalence.symmetric (Setoid.eq freeProductSetoid) {(a +RP b) +RP c} {a +RP (b +RP c)} (plusAssoc a b c)
Group.identRight FreeProductGroup {empty} = Equivalence.reflexive (Setoid.eq freeProductSetoid) {empty}
Group.identRight FreeProductGroup {nonempty i x} rewrite refl {x = 0} = plusEmptyRight x
Group.identLeft FreeProductGroup {empty} = Equivalence.reflexive (Setoid.eq freeProductSetoid) {empty}
Group.identLeft FreeProductGroup {nonempty i x} = Equivalence.reflexive (Setoid.eq freeProductSetoid) {nonempty i x}
Group.invLeft FreeProductGroup {x} = invLeft x
Group.invRight FreeProductGroup {x} = invRight x