mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-13 23:58:38 +00:00
185 lines
28 KiB
Agda
185 lines
28 KiB
Agda
{-# OPTIONS --safe --warning=error --without-K --guardedness #-}
|
||
|
||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||
open import Setoids.Setoids
|
||
open import Rings.Definition
|
||
open import Rings.Lemmas
|
||
open import Rings.Orders.Partial.Definition
|
||
open import Rings.Orders.Total.Definition
|
||
open import Groups.Definition
|
||
open import Groups.Groups
|
||
open import Fields.Fields
|
||
open import Fields.Orders.Total.Definition
|
||
open import Sets.EquivalenceRelations
|
||
open import Sequences
|
||
open import Setoids.Orders.Partial.Definition
|
||
open import Setoids.Orders.Total.Definition
|
||
open import Functions.Definition
|
||
open import LogicalFormulae
|
||
open import Numbers.Naturals.Semiring
|
||
open import Numbers.Naturals.Addition
|
||
open import Numbers.Naturals.Order
|
||
open import Numbers.Naturals.Order.Lemmas
|
||
open import Semirings.Definition
|
||
open import Groups.Homomorphisms.Definition
|
||
open import Rings.Homomorphisms.Definition
|
||
open import Groups.Lemmas
|
||
open import Orders.Total.Definition
|
||
|
||
module Fields.CauchyCompletion.PartiallyOrderedRing {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) where
|
||
|
||
private
|
||
lemma3 : {c d : _} {C : Set c} {S : Setoid {c} {d} C} {_+_ : C → C → C} (G : Group S _+_) → ({x y : C} → Setoid._∼_ S (x + y) (y + x)) → (x y z : C) → Setoid._∼_ S (((Group.inverse G x) + y) + (x + z)) (y + z)
|
||
lemma3 {S = S} {_+_ = _+_} G ab x y z = transitive +Associative (+WellDefined (transitive (ab {inverse x + y}) (transitive +Associative (transitive (+WellDefined invRight reflexive) identLeft))) reflexive)
|
||
where
|
||
open Setoid S
|
||
open Equivalence (Setoid.eq S)
|
||
open Group G
|
||
|
||
open Setoid S
|
||
open SetoidTotalOrder (TotallyOrderedRing.total order)
|
||
open SetoidPartialOrder pOrder
|
||
open Equivalence eq
|
||
open PartiallyOrderedRing pRing
|
||
open Ring R
|
||
open Group additiveGroup
|
||
open Field F
|
||
|
||
open import Fields.Lemmas F
|
||
open import Rings.Orders.Partial.Lemmas pRing
|
||
open import Rings.Orders.Total.Lemmas order
|
||
open import Fields.Orders.Lemmas {F = F} {pRing} (record { oRing = order })
|
||
open import Fields.Orders.Total.Lemmas {F = F} (record { oRing = order })
|
||
open import Fields.CauchyCompletion.Definition order F
|
||
open import Fields.CauchyCompletion.Addition order F
|
||
open import Fields.CauchyCompletion.Multiplication order F
|
||
open import Fields.CauchyCompletion.Approximation order F
|
||
open import Fields.CauchyCompletion.Group order F
|
||
open import Fields.CauchyCompletion.Ring order F
|
||
open import Fields.CauchyCompletion.Comparison order F
|
||
open import Fields.CauchyCompletion.Setoid order F
|
||
open import Groups.Homomorphisms.Lemmas CInjectionGroupHom
|
||
open import Setoids.Orders.Total.Lemmas (TotallyOrderedRing.total order)
|
||
|
||
private
|
||
productPositives : (a b : A) → (injection 0R) <Cr a → (injection 0R) <Cr b → (injection 0R) <Cr (a * b)
|
||
productPositives a b record { e = eA ; 0<e = 0<eA ; N = Na ; property = prA } record { e = eB ; 0<e = 0<eB ; N = Nb ; property = prB } = record { e = eA * eB ; 0<e = orderRespectsMultiplication 0<eA 0<eB ; N = Na +N Nb ; property = ans }
|
||
where
|
||
ans : (m : ℕ) → Na +N Nb <N m → ((eA * eB) + index (CauchyCompletion.elts (injection 0R)) m) < (a * b)
|
||
ans m <m = <WellDefined (symmetric (transitive (+WellDefined reflexive (identityOfIndiscernablesRight _∼_ reflexive (indexAndConst 0R m))) identRight)) reflexive (ringMultiplyPositives 0<eA 0<eB (<WellDefined (transitive (+WellDefined reflexive (identityOfIndiscernablesRight _∼_ reflexive (indexAndConst 0R m))) identRight) reflexive (prA m (inequalityShrinkLeft <m))) (<WellDefined (transitive (+WellDefined reflexive (identityOfIndiscernablesRight _∼_ reflexive (indexAndConst 0R m))) identRight) reflexive (prB m (inequalityShrinkRight <m))))
|
||
|
||
productPositives' : (a b : CauchyCompletion) (interA interB : A) → (0R < interA) → (0R < interB) → (interA r<C a) → (interB r<C b) → (interA * interB) r<C (a *C b)
|
||
productPositives' a b interA interB 0<iA 0<iB record { e = interA' ; 0<e = 0<interA' ; N = Na ; pr = prA } record { e = interB' ; 0<e = 0<interB' ; N = Nb ; pr = prB } = record { e = interA' * interB' ; 0<e = orderRespectsMultiplication 0<interA' 0<interB' ; N = Na +N Nb ; pr = ans }
|
||
where
|
||
ans : (m : ℕ) → (Na +N Nb <N m) → ((interA * interB) + (interA' * interB')) < index (CauchyCompletion.elts (a *C b)) m
|
||
ans m <m rewrite indexAndApply (CauchyCompletion.elts a) (CauchyCompletion.elts b) _*_ {m} = <Transitive (<WellDefined identRight (symmetric *DistributesOver+) (<WellDefined reflexive (+WellDefined *Commutative *Commutative) (<WellDefined reflexive (+WellDefined (symmetric *DistributesOver+) (symmetric *DistributesOver+)) (<WellDefined groupIsAbelian (transitive (transitive groupIsAbelian (transitive (symmetric +Associative) (+WellDefined *Commutative (transitive groupIsAbelian (transitive (+WellDefined reflexive *Commutative) (symmetric +Associative)))))) +Associative) (orderRespectsAddition (<WellDefined identRight reflexive (ringAddInequalities (orderRespectsMultiplication 0<iB 0<interA') (orderRespectsMultiplication 0<interB' 0<iA))) ((interA * interB) + (interA' * interB'))))))) (ringMultiplyPositives (<WellDefined identRight reflexive (ringAddInequalities 0<iA 0<interA')) (<WellDefined identRight reflexive (ringAddInequalities 0<iB 0<interB')) (prA m (inequalityShrinkLeft <m)) (prB m (inequalityShrinkRight <m)))
|
||
|
||
<COrderRespectsMultiplication : (a b : CauchyCompletion) → (injection 0R <C a) → (injection 0R <C b) → (injection 0R <C (a *C b))
|
||
<COrderRespectsMultiplication a b record { i = interA ; a<i = 0<interA ; i<b = interA<a } record { i = interB ; a<i = 0<interB ; i<b = interB<b } = record { i = interA * interB ; a<i = productPositives interA interB 0<interA 0<interB ; i<b = productPositives' a b interA interB (<CCollapsesL 0R _ 0<interA) (<CCollapsesL 0R _ 0<interB) interA<a interB<b }
|
||
|
||
cOrderRespectsAdditionLeft' : (a : CauchyCompletion) (b : A) (c : A) → (a <Cr b) → (a +C injection c) <C (injection b +C injection c)
|
||
cOrderRespectsAdditionLeft' a b c record { e = e ; 0<e = 0<e ; N = N ; property = pr } = <CWellDefined {a +C injection c} {a +C injection c} {injection (b + c)} {(injection b) +C (injection c)} (Equivalence.reflexive (Setoid.eq cauchyCompletionSetoid) {a +C injection c}) (GroupHom.groupHom (RingHom.groupHom CInjectionRingHom)) (<CRelaxR (record { e = e ; 0<e = 0<e ; N = N ; property = λ m N<m → <WellDefined (transitive (symmetric +Associative) (+WellDefined reflexive (ans m))) reflexive (orderRespectsAddition (pr m N<m) c) }))
|
||
where
|
||
ans : (m : ℕ) → (index (CauchyCompletion.elts a) m + c) ∼ index (apply _+_ (CauchyCompletion.elts a) (constSequence c)) m
|
||
ans m rewrite indexAndApply (CauchyCompletion.elts a) (constSequence c) _+_ {m} | indexAndConst c m = reflexive
|
||
|
||
l1 : (a : A) (b : CauchyCompletion) → a r<C b → 0R r<C (b +C injection (inverse a))
|
||
l1 a b record { e = e ; 0<e = 0<e ; N = N ; pr = pr } = record { e = e ; 0<e = 0<e ; N = N ; pr = λ m N<m → <WellDefined (transitive groupIsAbelian (transitive +Associative (+WellDefined invLeft reflexive))) (ans m) (orderRespectsAddition (pr m N<m) (inverse a)) }
|
||
where
|
||
ans : (m : ℕ) → (index (CauchyCompletion.elts b) m + inverse a) ∼ index (CauchyCompletion.elts (b +C injection (inverse a))) m
|
||
ans m rewrite indexAndApply (CauchyCompletion.elts b) (constSequence (inverse a)) _+_ {m} | indexAndConst (inverse a) m = reflexive
|
||
|
||
l1' : (a : A) (b : CauchyCompletion) → 0R r<C (b +C injection a) → (inverse a) r<C b
|
||
l1' a b record { e = e ; 0<e = 0<e ; N = N ; pr = pr } = record { e = e ; 0<e = 0<e ; N = N ; pr = λ m N<m → <WellDefined (transitive (+WellDefined identLeft reflexive) groupIsAbelian) (symmetric (ans m)) (orderRespectsAddition (pr m N<m) (inverse a)) }
|
||
where
|
||
ans : (m : ℕ) → (index (CauchyCompletion.elts b) m) ∼ (index (CauchyCompletion.elts (b +C injection a)) m + inverse a)
|
||
ans m rewrite indexAndApply (CauchyCompletion.elts b) (constSequence a) _+_ {m} | indexAndConst a m = transitive (symmetric identRight) (transitive (+WellDefined reflexive (symmetric invRight)) +Associative)
|
||
|
||
l2 : (a : CauchyCompletion) (b : A) → a <Cr b → 0R r<C (injection b +C (-C a))
|
||
l2 a b record { e = e ; 0<e = 0<e ; N = N ; property = property } = record { e = e ; 0<e = 0<e ; N = N ; pr = λ m N<m → <WellDefined (transitive (transitive (symmetric +Associative) (+WellDefined reflexive invRight)) groupIsAbelian) (ans m) (orderRespectsAddition (property m N<m) (inverse (index (CauchyCompletion.elts a) m))) }
|
||
where
|
||
ans : (m : ℕ) → (b + inverse (index (CauchyCompletion.elts a) m)) ∼ index (CauchyCompletion.elts (injection b +C (-C a))) m
|
||
ans m rewrite indexAndApply (CauchyCompletion.elts (injection b)) (CauchyCompletion.elts (-C a)) _+_ {m} | indexAndConst b m | mapAndIndex (CauchyCompletion.elts a) inverse m = reflexive
|
||
|
||
l2' : (a : CauchyCompletion) (b : A) → 0R r<C (injection b +C a) → (-C a) <Cr b
|
||
l2' a b record { e = e ; 0<e = 0<e ; N = N ; pr = pr } = record { e = e ; 0<e = 0<e ; N = N ; property = λ m N<m → <WellDefined (+WellDefined identLeft reflexive) (ans m) (orderRespectsAddition (pr m N<m) (index (CauchyCompletion.elts (-C a)) m)) }
|
||
where
|
||
ans : (m : ℕ) → (index (CauchyCompletion.elts (injection b +C a)) m + index (map inverse (CauchyCompletion.elts a)) m) ∼ b
|
||
ans m rewrite indexAndApply (CauchyCompletion.elts (injection b)) (CauchyCompletion.elts a) _+_ {m} | indexAndConst b m | equalityCommutative (mapAndIndex (CauchyCompletion.elts a) inverse m) = transitive (symmetric +Associative) (transitive (+WellDefined reflexive invRight) identRight)
|
||
|
||
invInj : (i : A) → Setoid._∼_ cauchyCompletionSetoid (injection (inverse i) +C injection i) (injection 0R)
|
||
invInj i = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges (injection (inverse i) +C injection i) }} {record { converges = CauchyCompletion.converges ((-C (injection i)) +C injection i) }} {record { converges = CauchyCompletion.converges (injection 0R) }} (Group.+WellDefinedLeft CGroup {record { converges = CauchyCompletion.converges (injection (inverse i)) }} {record { converges = CauchyCompletion.converges (injection i)}} {record { converges = CauchyCompletion.converges (-C (injection i)) }} homRespectsInverse) (Group.invLeft CGroup {injection i})
|
||
|
||
cOrderMove : (a b : A) (c : CauchyCompletion) → (injection a +C c) <Cr b → a r<C (injection b +C (-C c))
|
||
cOrderMove a b c record { e = e ; 0<e = 0<e ; N = N ; property = property } = record { e = e ; 0<e = 0<e ; N = N ; pr = λ m N<m → <WellDefined (transitive (symmetric +Associative) (transitive (+WellDefined reflexive (transitive (+WellDefined (identityOfIndiscernablesRight _∼_ reflexive (indexAndApply (CauchyCompletion.elts (injection a)) (CauchyCompletion.elts c) _+_ {m})) reflexive) (transitive (symmetric +Associative) (transitive (+WellDefined (identityOfIndiscernablesRight _∼_ reflexive (indexAndConst a m)) invRight) identRight)))) groupIsAbelian)) (transitive (+WellDefined (identityOfIndiscernablesLeft _∼_ reflexive (indexAndConst b m)) (identityOfIndiscernablesRight _∼_ reflexive (mapAndIndex (CauchyCompletion.elts c) inverse m))) (identityOfIndiscernablesLeft _∼_ reflexive (indexAndApply (CauchyCompletion.elts (injection b)) (CauchyCompletion.elts (-C c)) _+_ {m}))) (orderRespectsAddition (property m N<m) (inverse (index (CauchyCompletion.elts c) m))) }
|
||
|
||
cOrderMove' : (a b : A) (c : CauchyCompletion) → (injection a +C (-C c)) <Cr b → a r<C (injection b +C c)
|
||
cOrderMove' a b c pr = r<CWellDefinedRight _ _ _ (Group.+WellDefinedRight CGroup {record { converges = CauchyCompletion.converges (injection b) }} {record { converges = CauchyCompletion.converges (-C (-C c)) }} {record {converges = CauchyCompletion.converges c }} (invTwice CGroup record { converges = CauchyCompletion.converges c })) (cOrderMove a b (-C c) pr)
|
||
|
||
cOrderMove'' : (a : CauchyCompletion) (b c : A) → (a +C (-C injection b)) <Cr c → a <Cr (b + c)
|
||
cOrderMove'' a b c record { e = e ; 0<e = 0<e ; N = N ; property = property } = record { e = e ; 0<e = 0<e ; N = N ; property = λ m N<m → <WellDefined (transitive (symmetric +Associative) (+WellDefined reflexive (transitive (+WellDefined (identityOfIndiscernablesRight _∼_ reflexive (indexAndApply (CauchyCompletion.elts a) _ _+_ {m})) reflexive) (transitive (transitive (symmetric +Associative) (+WellDefined reflexive (transitive (+WellDefined (transitive (identityOfIndiscernablesLeft _∼_ reflexive (mapAndIndex _ inverse m)) (inverseWellDefined additiveGroup (identityOfIndiscernablesRight _∼_ reflexive (indexAndConst b m)))) reflexive) invLeft))) identRight)))) groupIsAbelian (orderRespectsAddition (property m N<m) b) }
|
||
|
||
cOrderRespectsAdditionLeft'' : (a b : A) (c : CauchyCompletion) → (a < b) → (injection a +C c) <C (injection b +C c)
|
||
cOrderRespectsAdditionLeft'' a b c a<b with halve charNot2 (b + inverse a)
|
||
... | b-a/2 , prDiff with approximateAbove c b-a/2 (halvePositive' prDiff (moveInequality a<b))
|
||
... | aboveC , (c<aboveC ,, aboveC-C<e) = record { i = a + aboveC ; a<i = <CRelaxR' (SetoidPartialOrder.<WellDefined <COrder (Ring.groupIsAbelian CRing {record { converges = CauchyCompletion.converges c }} {record { converges = CauchyCompletion.converges (injection a) }}) (Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges (injection aboveC +C injection a) }} {record { converges = CauchyCompletion.converges (injection a +C injection aboveC) }} {record { converges = CauchyCompletion.converges (injection (a + aboveC)) }} (Ring.groupIsAbelian CRing {record { converges = CauchyCompletion.converges (injection aboveC) }} {record { converges = CauchyCompletion.converges (injection a) }}) (Equivalence.symmetric (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges (injection (a + aboveC)) }} {record { converges = CauchyCompletion.converges (injection a +C injection aboveC) }} (GroupHom.groupHom CInjectionGroupHom))) (cOrderRespectsAdditionLeft' c aboveC a c<aboveC)) ; i<b = cOrderMove' _ _ _ (<CRelaxR' (<CTransitive (<CRelaxR t) (<CInherited u))) }
|
||
where
|
||
g : ((injection aboveC +C (-C c)) +C injection a) <C ((injection b-a/2) +C (injection a))
|
||
g = cOrderRespectsAdditionLeft' _ _ a (<CRelaxR' aboveC-C<e)
|
||
g' : ((injection aboveC +C (-C c)) +C injection a) <C (injection (b-a/2 + a))
|
||
g' = <CWellDefined (Equivalence.reflexive (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges ((injection aboveC +C (-C c)) +C injection a) }}) (Equivalence.symmetric (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges (injection (b-a/2 + a)) }} {record { converges = CauchyCompletion.converges (injection b-a/2 +C injection a) }} (GroupHom.groupHom CInjectionGroupHom)) g
|
||
t : (injection (a + aboveC) +C (-C c)) <Cr (b-a/2 + a)
|
||
t = <CRelaxR' (<CWellDefined (Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges (((injection aboveC) +C (-C c)) +C injection a) }} {record { converges = CauchyCompletion.converges (injection a +C ((injection aboveC) +C (-C c))) }} {record { converges = CauchyCompletion.converges (injection (a + aboveC) +C (-C c)) }} (Ring.groupIsAbelian CRing {record { converges = CauchyCompletion.converges (injection aboveC +C (-C c)) }} {record { converges = CauchyCompletion.converges (injection a) }}) (Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges (injection a +C ((injection aboveC) +C (-C c))) }} {record { converges = CauchyCompletion.converges (((injection a) +C (injection aboveC)) +C (-C c)) }} {record { converges = CauchyCompletion.converges ((injection (a + aboveC)) +C (-C c)) }} (Group.+Associative CGroup {record { converges = CauchyCompletion.converges (injection a) }} {record { converges = CauchyCompletion.converges (injection aboveC) }} {record { converges = CauchyCompletion.converges (-C c) }}) (Group.+WellDefinedLeft CGroup {record { converges = CauchyCompletion.converges (injection a +C injection aboveC) }} {record { converges = CauchyCompletion.converges (-C c) }} {record { converges = CauchyCompletion.converges (injection (a + aboveC)) }} (Equivalence.symmetric (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges (injection (a + aboveC)) }} {record { converges = CauchyCompletion.converges (injection a +C injection aboveC) }} (GroupHom.groupHom CInjectionGroupHom))))) (Equivalence.reflexive (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges (injection (b-a/2 + a)) }}) g')
|
||
lemm : 0R < b-a/2
|
||
lemm = halvePositive' prDiff (moveInequality a<b)
|
||
u : (b-a/2 + a) < b
|
||
u = <WellDefined (transitive (+WellDefined (symmetric prDiff) reflexive) (transitive groupIsAbelian (transitive +Associative (transitive (+WellDefined (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invLeft) identRight)) reflexive) groupIsAbelian)))) (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invLeft) identRight)) (orderRespectsAddition (<WellDefined identLeft (transitive (transitive +Associative (transitive (+WellDefined (transitive groupIsAbelian (+WellDefined reflexive (symmetric (invTwice additiveGroup b-a/2)))) reflexive) (symmetric +Associative))) (+WellDefined reflexive (symmetric (invContravariant additiveGroup)))) (orderRespectsAddition lemm (b + inverse a))) (a + inverse b-a/2))
|
||
|
||
cOrderRespectsAdditionLeft''Flip : (a b : A) (c : CauchyCompletion) → (a < b) → (c +C injection a) <C (c +C injection b)
|
||
cOrderRespectsAdditionLeft''Flip a b c a<b = <CWellDefined ((Ring.groupIsAbelian CRing {record { converges = CauchyCompletion.converges (injection a) }} {record { converges = CauchyCompletion.converges c }})) (Ring.groupIsAbelian CRing {record { converges = CauchyCompletion.converges (injection b) }} {record { converges = CauchyCompletion.converges c }}) (cOrderRespectsAdditionLeft'' a b c a<b)
|
||
|
||
cOrderRespectsAdditionLeft''' : (a b : CauchyCompletion) (c : A) → (a <C b) → (a +C injection c) <C (b +C injection c)
|
||
cOrderRespectsAdditionLeft''' a b c record { i = i ; a<i = a<i ; i<b = i<b } = <CTransitive (cOrderRespectsAdditionLeft' a i c a<i) (<CWellDefined (Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges (injection (c + i)) }} {record { converges = CauchyCompletion.converges (injection c +C injection i) }} {record { converges = CauchyCompletion.converges (injection i +C injection c) }} (GroupHom.groupHom CInjectionGroupHom) (Ring.groupIsAbelian CRing {record { converges = CauchyCompletion.converges (injection c) }} {record { converges = CauchyCompletion.converges (injection i) }})) (Ring.groupIsAbelian CRing {record { converges = CauchyCompletion.converges (injection c) }} {record { converges = CauchyCompletion.converges b }}) (flip<C' {record { converges = CauchyCompletion.converges (injection (c + i)) }} {record { converges = CauchyCompletion.converges (injection c +C b) }} (<CWellDefined (Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges ((-C b) +C injection (inverse c)) }} {record { converges = CauchyCompletion.converges ((-C b) +C (-C (injection c))) }} {record { converges = CauchyCompletion.converges (-C (injection c +C b)) }} (Group.+WellDefinedRight CGroup {record { converges = CauchyCompletion.converges (-C b) }} {record { converges = CauchyCompletion.converges (injection (inverse c)) }} {record { converges = CauchyCompletion.converges (-C (injection c)) }} homRespectsInverse) (Equivalence.symmetric (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges (-C (injection c +C b)) }} {record { converges = CauchyCompletion.converges ((-C b) +C (-C (injection c))) }} (invContravariant CGroup {record { converges = CauchyCompletion.converges (injection c) }} {record { converges = CauchyCompletion.converges b }}))) homRespectsInverse' (cOrderRespectsAdditionLeft' (-C b) (inverse i) (inverse c) (flipR<C i<b)))))
|
||
|
||
cOrderRespectsAdditionRightZero : (a : CauchyCompletion) → (0R r<C a) → (c : CauchyCompletion) → c <C (a +C c)
|
||
cOrderRespectsAdditionRightZero a record { e = e ; 0<e = 0<e ; N = N1 ; pr = pr } c with halve charNot2 e
|
||
... | e/2 , prE/2 with approximateAbove c e/2 (halvePositive' prE/2 0<e)
|
||
... | c+ , (c<c+ ,, c+<c+e/2) with approximateBelow (a +C c) e/2 (halvePositive' prE/2 0<e)
|
||
... | α , (α<a+c ,, a+c<α+e/2) with totality c+ α
|
||
... | inl (inl c+<α) = record { i = α ; a<i = <CRelaxR' (<CTransitive (<CRelaxR c<c+) (<CInherited c+<α)) ; i<b = α<a+c }
|
||
-- The remaining cases can't actually happen, but it's easier to go this way
|
||
... | inr c+=α = record { i = α ; a<i = <CrWellDefinedRight c _ _ c+=α c<c+ ; i<b = α<a+c }
|
||
... | inl (inr α<c+) with cOrderMove'' (a +C c) α e/2 (<CRelaxR' a+c<α+e/2)
|
||
... | record { e = f ; 0<e = 0<f ; N = M ; property = pr2 } with CauchyCompletion.converges c e/2 (halvePositive' prE/2 0<e)
|
||
... | N3 , pr4 = record { i = α ; a<i = record { e = f ; 0<e = 0<f ; N = u ; property = ans } ; i<b = α<a+c }
|
||
where
|
||
u : ℕ
|
||
u = succ ((N1 +N M) +N N3)
|
||
help : (m : ℕ) → u <N m → index (CauchyCompletion.elts c) m < (e/2 + index (CauchyCompletion.elts c) u)
|
||
help m size with pr4 {m} {u} (lessTransitive (le (N1 +N M) refl) size) (le (N1 +N M) refl)
|
||
... | bl with totality 0G (index (CauchyCompletion.elts c) m + inverse (index (CauchyCompletion.elts c) u))
|
||
... | inl (inl 0<t) = <WellDefined (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invLeft) identRight)) reflexive (orderRespectsAddition bl (index (CauchyCompletion.elts c) u))
|
||
... | inl (inr cm-cU<0) = <Transitive (<WellDefined (transitive (transitive (symmetric +Associative) (+WellDefined reflexive invLeft)) identRight) reflexive (orderRespectsAddition cm-cU<0 (index (CauchyCompletion.elts c) u))) (orderRespectsAddition (halvePositive' prE/2 0<e) (index (CauchyCompletion.elts c) u))
|
||
... | inr (0=t) = <WellDefined (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invLeft) identRight)) reflexive (orderRespectsAddition bl (index (CauchyCompletion.elts c) u))
|
||
ans : (m : ℕ) → u <N m → (f + index (CauchyCompletion.elts c) m) < α
|
||
ans m size = <Transitive (<WellDefined reflexive +Associative (<WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition (<Transitive (<WellDefined reflexive (transitive (+WellDefined (symmetric (transitive (+WellDefined (transitive identLeft (symmetric prE/2)) reflexive) (transitive (transitive (symmetric +Associative) (+WellDefined reflexive invRight)) identRight))) reflexive) (symmetric +Associative)) (help m size)) (<WellDefined reflexive (transitive groupIsAbelian (transitive (symmetric +Associative) (+WellDefined reflexive groupIsAbelian))) (orderRespectsAddition (pr u (le (M +N N3) (applyEquality succ (transitivity (additionNIsCommutative _ N1) (Semiring.+Associative ℕSemiring N1 M _))))) (inverse e/2 + index (CauchyCompletion.elts c) u)))) f))) (<WellDefined (transitive groupIsAbelian (transitive +Associative (+WellDefined groupIsAbelian (identityOfIndiscernablesRight _∼_ reflexive (indexAndApply (CauchyCompletion.elts a) (CauchyCompletion.elts c) _+_ {u}))))) (transitive (transitive (symmetric +Associative) (+WellDefined reflexive invRight)) identRight) (orderRespectsAddition (pr2 u (le (N1 +N N3) (applyEquality succ (transitivity (equalityCommutative (Semiring.+Associative ℕSemiring N1 _ _)) (transitivity (applyEquality (N1 +N_) (additionNIsCommutative N3 M)) (Semiring.+Associative ℕSemiring N1 _ _)))))) (inverse e/2)))
|
||
|
||
cOrderRespectsAdditionLeft : (a : CauchyCompletion) (b : A) (c : CauchyCompletion) → (a <Cr b) → (a +C c) <C (injection b +C c)
|
||
cOrderRespectsAdditionLeft a b c a<b = <CWellDefined {record { converges = CauchyCompletion.converges (a +C c) }}{record { converges = CauchyCompletion.converges (a +C c) }}{record { converges = CauchyCompletion.converges (((-C a) +C injection b) +C (a +C c)) }}{record { converges = CauchyCompletion.converges (injection b +C c) }} (Equivalence.reflexive (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges (a +C c)}}) (lemma3 CGroup (λ {x} {y} → Ring.groupIsAbelian CRing {x} {y}) a (injection b) c) (cOrderRespectsAdditionRightZero ((-C a) +C injection b) (r<CWellDefinedLeft (inverse b + b) 0R ((-C a) +C injection b) invLeft (<CRelaxL' (<CWellDefined {record { converges = CauchyCompletion.converges (injection (inverse b) +C injection b) }}{record { converges = CauchyCompletion.converges (injection (inverse b + b)) }}{record { converges = CauchyCompletion.converges ((-C a) +C injection b) }}{record { converges = CauchyCompletion.converges ((-C a) +C injection b) }} (GroupHom.groupHom' CInjectionGroupHom) (Equivalence.reflexive (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges ((-C a) +C injection b) }}) (cOrderRespectsAdditionLeft''' _ _ b (<CRelaxL (flip<CR a<b)))))) (a +C c))
|
||
|
||
lemma2 : (a b : CauchyCompletion) → Setoid._∼_ cauchyCompletionSetoid (Group.inverse CGroup ((-C a) +C (-C b))) (a +C b)
|
||
lemma2 a b = tr {record { converges = CauchyCompletion.converges (-C ((-C a) +C (-C b))) }} {record { converges = CauchyCompletion.converges ((-C (-C b)) +C (-C (-C a))) }} {record { converges = CauchyCompletion.converges (a +C b) }} (invContravariant CGroup {record { converges = CauchyCompletion.converges (-C a) }} {record { converges = CauchyCompletion.converges (-C b) }}) (tr {record { converges = CauchyCompletion.converges ((-C (-C b)) +C (-C (-C a))) }} {record { converges = CauchyCompletion.converges (b +C a) }} {record { converges = CauchyCompletion.converges (a +C b) }} (Group.+WellDefined CGroup {record { converges = CauchyCompletion.converges (-C (-C b)) }} {record { converges = CauchyCompletion.converges (-C (-C a)) }} {record { converges = CauchyCompletion.converges b }} {record { converges = CauchyCompletion.converges a }} (invTwice CGroup b) (invTwice CGroup a)) (Ring.groupIsAbelian CRing {record { converges = CauchyCompletion.converges b }} {record { converges = CauchyCompletion.converges a }}))
|
||
where
|
||
open Setoid cauchyCompletionSetoid
|
||
open Equivalence (Setoid.eq cauchyCompletionSetoid) renaming (transitive to tr)
|
||
|
||
cOrderRespectsAdditionRight : (a : A) (b : CauchyCompletion) (c : CauchyCompletion) → (a r<C b) → (injection a +C c) <C (b +C c)
|
||
cOrderRespectsAdditionRight a b c a<b = <CWellDefined (Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {record { converges = CauchyCompletion.converges (Group.inverse CGroup (injection (inverse a) +C (-C c))) }} {record { converges = CauchyCompletion.converges (Group.inverse CGroup ((-C injection a) +C (-C c))) }} {record { converges = CauchyCompletion.converges (injection a +C c) }} (inverseWellDefined CGroup {record { converges = CauchyCompletion.converges (injection (inverse a) +C (-C c)) }} {record { converges = CauchyCompletion.converges ((-C (injection a)) +C (-C c)) }} (Group.+WellDefinedLeft CGroup {record { converges = CauchyCompletion.converges (injection (inverse a)) }} {record { converges = CauchyCompletion.converges (-C c) }} {record { converges = CauchyCompletion.converges (-C (injection a)) }} homRespectsInverse)) (lemma2 (injection a) c)) (lemma2 b c) (flip<C (cOrderRespectsAdditionLeft _ _ (Group.inverse CGroup c) (flipR<C a<b)))
|
||
|
||
cOrderRespectsAddition : (a b : CauchyCompletion) → (a <C b) → (c : CauchyCompletion) → (a +C c) <C (b +C c)
|
||
cOrderRespectsAddition a b record { i = i ; a<i = a<i ; i<b = i<b } c = SetoidPartialOrder.<Transitive <COrder (cOrderRespectsAdditionLeft a i c a<i) (cOrderRespectsAdditionRight i b c i<b)
|
||
|
||
CpOrderedRing : PartiallyOrderedRing CRing <COrder
|
||
PartiallyOrderedRing.orderRespectsAddition CpOrderedRing {a} {b} = cOrderRespectsAddition a b
|
||
PartiallyOrderedRing.orderRespectsMultiplication CpOrderedRing {a} {b} 0<a 0<b = <COrderRespectsMultiplication a b 0<a 0<b
|