{-# OPTIONS --safe --warning=error --without-K #-} open import Groups.Definition open import Setoids.Orders.Partial.Definition open import Setoids.Setoids open import Functions.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Groups.Orders.Partial.Definition {n m : _} {A : Set n} {S : Setoid {n} {m} A} {_+_ : A → A → A} (G : Group S _+_) where open Group G open Setoid S record PartiallyOrderedGroup {p : _} {_<_ : Rel {_} {p} A} (pOrder : SetoidPartialOrder S _<_) : Set (lsuc n ⊔ m ⊔ p) where field orderRespectsAddition : {a b : A} → (a < b) → (c : A) → (a + c) < (b + c)