{-# OPTIONS --safe --warning=error --without-K #-} open import Numbers.Naturals.Definition open import LogicalFormulae open import Groups.Definition open import Groups.Orders.Partial.Definition open import Setoids.Orders.Partial.Definition open import Setoids.Setoids open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Groups.Orders.Archimedean {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {G : Group S _+_} {c : _} {_<_ : A → A → Set c} {pOrder : SetoidPartialOrder S _<_} (p : PartiallyOrderedGroup G pOrder) where open Setoid S open import Groups.Cyclic.Definition G open Group G Archimedean : Set (a ⊔ c) Archimedean = (x y : A) → (0G < x) → (0G < y) → Sg ℕ (λ n → y < (positiveEltPower x n))