{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Groups open import Groups.Lemmas open import Groups.Definition open import Numbers.Naturals.Naturals open import Setoids.Orders open import Setoids.Setoids open import Functions open import Sets.EquivalenceRelations open import Rings.Definition open import Rings.Order open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Rings.Orders.Lemmas {n m p : _} {A : Set n} {S : Setoid {n} {m} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {_} {p} A} {R : Ring S _+_ _*_} {pOrder : SetoidPartialOrder S _<_} {tOrder : SetoidTotalOrder pOrder} (order : OrderedRing R tOrder) where open OrderedRing order open Setoid S open SetoidPartialOrder pOrder open SetoidTotalOrder tOrder open Ring R open Group additiveGroup open import Rings.Lemmas R ringAddInequalities : {w x y z : A} → w < x → y < z → (w + y) < (x + z) ringAddInequalities {w = w} {x} {y} {z} w