{-# OPTIONS --safe --warning=error --without-K #-} open import Numbers.ClassicalReals.RealField open import LogicalFormulae open import Setoids.Subset open import Setoids.Setoids open import Setoids.Orders open import Sets.EquivalenceRelations open import Rings.Orders.Partial.Definition open import Rings.Definition open import Fields.Fields open import Groups.Definition open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Functions module Numbers.Intervals.Definition {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {_<_ : Rel {_} {c} A} {R : Ring S _+_ _*_} {pOrder : SetoidPartialOrder S _<_} (pRing : PartiallyOrderedRing R pOrder) where record OpenInterval : Set a where field minBound : A maxBound : A isInInterval : A → OpenInterval → Set c isInInterval a record { minBound = min ; maxBound = max } = (min < a) && (a < max)