{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Groups open import Groups.Homomorphisms.Definition open import Groups.Definition open import Numbers.Naturals.Definition open import Numbers.Integers.Integers open import Numbers.Integers.Definition open import Setoids.Orders open import Setoids.Setoids open import Functions open import Sets.EquivalenceRelations open import Vectors open import Lists.Lists open import Maybe open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Groups.Polynomials.Examples where open import Groups.Polynomials.Definition ℤGroup private decide : _ decide = (λ a → ℤDecideEquality a (nonneg 0)) p1 : degree decide [] ≡ no p1 = refl p2 : degree decide (nonneg 0 :: []) ≡ no p2 = refl p3 : degree decide (nonneg 1 :: []) ≡ yes 0 p3 = refl