{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Lemmas open import Groups.Definition open import Setoids.Orders open import Setoids.Setoids open import Functions open import Sets.EquivalenceRelations open import Rings.Definition open import Rings.Orders.Partial.Definition open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order module Rings.Orders.Partial.Lemmas {n m p : _} {A : Set n} {S : Setoid {n} {m} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {_} {p} A} {R : Ring S _+_ _*_} {pOrder : SetoidPartialOrder S _<_} (pRing : PartiallyOrderedRing R pOrder) where abstract open PartiallyOrderedRing pRing open Setoid S open SetoidPartialOrder pOrder open Ring R open Group additiveGroup open Equivalence eq open import Rings.Lemmas R ringAddInequalities : {w x y z : A} → w < x → y < z → (w + y) < (x + z) ringAddInequalities {w = w} {x} {y} {z} w