{-# OPTIONS --safe --warning=error --without-K #-} open import Rings.Definition open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Setoids.Setoids open import Setoids.Orders open import Functions open import Fields.Fields open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Fields.Orders.Total.Definition {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (F : Field R) where open Ring R record TotallyOrderedField {p} {_<_ : Rel {_} {p} A} {pOrder : SetoidPartialOrder S _<_} (pRing : PartiallyOrderedRing R pOrder) : Set (lsuc (m ⊔ n ⊔ p)) where field oRing : TotallyOrderedRing pRing