{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Homomorphisms.Definition open import Groups.Definition open import Rings.Definition open import Rings.Homomorphisms.Definition open import Rings.IntegralDomains.Definition open import Setoids.Setoids open import Sets.EquivalenceRelations module Fields.FieldOfFractions.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where open import Fields.FieldOfFractions.Setoid I open import Fields.FieldOfFractions.Ring I embedIntoFieldOfFractions : A → fieldOfFractionsSet embedIntoFieldOfFractions a = record { num = a ; denom = Ring.1R R ; denomNonzero = IntegralDomain.nontrivial I } homIntoFieldOfFractions : RingHom R fieldOfFractionsRing embedIntoFieldOfFractions RingHom.preserves1 homIntoFieldOfFractions = Equivalence.reflexive (Setoid.eq S) RingHom.ringHom homIntoFieldOfFractions {a} {b} = Equivalence.transitive (Setoid.eq S) (Ring.*WellDefined R (Equivalence.reflexive (Setoid.eq S)) (Ring.identIsIdent R)) (Ring.*Commutative R) GroupHom.groupHom (RingHom.groupHom homIntoFieldOfFractions) {x} {y} = need where open Setoid S open Equivalence eq need : ((x + y) * (Ring.1R R * Ring.1R R)) ∼ (Ring.1R R * ((x * Ring.1R R) + (Ring.1R R * y))) need = transitive (transitive (Ring.*WellDefined R reflexive (Ring.identIsIdent R)) (transitive (Ring.*Commutative R) (transitive (Ring.identIsIdent R) (Group.+WellDefined (Ring.additiveGroup R) (symmetric (transitive (Ring.*Commutative R) (Ring.identIsIdent R))) (symmetric (Ring.identIsIdent R)))))) (symmetric (Ring.identIsIdent R)) GroupHom.wellDefined (RingHom.groupHom homIntoFieldOfFractions) x=y = transitive (Ring.*Commutative R) (Ring.*WellDefined R reflexive x=y) where open Equivalence (Setoid.eq S) homIntoFieldOfFractionsIsInj : SetoidInjection S fieldOfFractionsSetoid embedIntoFieldOfFractions SetoidInjection.wellDefined homIntoFieldOfFractionsIsInj x=y = transitive (Ring.*Commutative R) (Ring.*WellDefined R reflexive x=y) where open Equivalence (Setoid.eq S) SetoidInjection.injective homIntoFieldOfFractionsIsInj x~y = transitive (symmetric identIsIdent) (transitive *Commutative (transitive x~y identIsIdent)) where open Ring R open Setoid S open Equivalence eq