{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Groups open import Groups.Homomorphisms.Definition open import Groups.Definition open import Numbers.Naturals.Definition open import Numbers.Naturals.Order open import Setoids.Orders open import Setoids.Setoids open import Functions open import Sets.EquivalenceRelations open import Rings.Definition open import Rings.Homomorphisms.Definition open import Groups.Homomorphisms.Lemmas open import Rings.IntegralDomains.Definition open import Rings.IntegralDomains.Examples open import Rings.EuclideanDomains.Definition open import Fields.Fields open import Fields.Lemmas open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Rings.EuclideanDomains.Examples where polynomialField : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} (F : Field R) → (Setoid._∼_ S (Ring.1R R) (Ring.0R R) → False) → EuclideanDomain R EuclideanDomain.isIntegralDomain (polynomialField F 1!=0) = fieldIsIntDom F 1!=0 EuclideanDomain.norm (polynomialField F _) a!=0 = zero EuclideanDomain.normSize (polynomialField F _) a!=0 b!=0 c b=ac = inr refl DivisionAlgorithmResult.quotient (EuclideanDomain.divisionAlg (polynomialField {_*_ = _*_} F _) {a = a} {b} a!=0 b!=0) with Field.allInvertible F b b!=0 ... | bInv , prB = a * bInv DivisionAlgorithmResult.rem (EuclideanDomain.divisionAlg (polynomialField F _) a!=0 b!=0) = Field.0F F DivisionAlgorithmResult.remSmall (EuclideanDomain.divisionAlg (polynomialField {S = S} F _) a!=0 b!=0) = inl (Equivalence.reflexive (Setoid.eq S)) DivisionAlgorithmResult.divAlg (EuclideanDomain.divisionAlg (polynomialField {S = S} {R = R} F _) {a = a} {b = b} a!=0 b!=0) with Field.allInvertible F b b!=0 ... | bInv , prB = transitive (transitive (transitive (symmetric identIsIdent) (transitive *Commutative (*WellDefined reflexive (symmetric prB)))) *Associative) (symmetric identRight) where open Setoid S open Equivalence eq open Ring R open Group additiveGroup