{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Groups open import Groups.Homomorphisms.Definition open import Groups.Definition open import Numbers.Naturals.Naturals open import Setoids.Orders open import Setoids.Setoids open import Functions open import Sets.EquivalenceRelations open import Rings.Definition open import Rings.Homomorphisms.Definition open import Groups.Homomorphisms.Lemmas open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Rings.Divisible.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where open Setoid S open Equivalence eq open Ring R _∣_ : Rel A a ∣ b = Sg A (λ c → (a * c) ∼ b) divisibleWellDefined : {x y a b : A} → (x ∼ y) → (a ∼ b) → x ∣ a → y ∣ b divisibleWellDefined x=y a=b (c , xc=a) = c , transitive (*WellDefined (symmetric x=y) reflexive) (transitive xc=a a=b)