{-# OPTIONS --safe --warning=error #-} open import LogicalFormulae open import Setoids.Setoids open import Functions open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Numbers.Naturals open import Sets.FinSet open import Groups.Groups open import Groups.GroupDefinition open import Groups.GroupActions module Groups.SymmetryGroups where data SymmetryGroupElements {a b : _} {A : Set a} (S : Setoid {a} {b} A) : Set (a ⊔ b) where sym : {f : A → A} → SetoidBijection S S f → SymmetryGroupElements S WellDefined : {a b c d : _} {A : Set a} {B : Set b} (S : Setoid {a} {c} A) (T : Setoid {b} {d} B) (f : A → B) → Set (a ⊔ c ⊔ d) WellDefined {A = A} S T f = {x y : A} → Setoid._∼_ S x y → Setoid._∼_ T (f x) (f y) data ExtensionallyEqual {a b c d : _} {A : Set a} {B : Set b} (S : Setoid {a} {c} A) (T : Setoid {b} {d} B) (f g : A → B) (fWd : WellDefined S T f) (gWd : WellDefined S T g) : Set (a ⊔ b ⊔ c ⊔ d) where eq : ({x : A} → Setoid._∼_ T (f x) (g x)) → ExtensionallyEqual S T f g fWd gWd extensionallyEqualReflexive : {a b c d : _} {A : Set a} {B : Set b} (S : Setoid {a} {c} A) (T : Setoid {b} {d} B) (f : A → B) (fWD1 fWD2 : WellDefined S T f) → ExtensionallyEqual S T f f fWD1 fWD2 extensionallyEqualReflexive S T f fWD1 _ = eq (Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq T))) extensionallyEqualSymmetric : {a b c d : _} {A : Set a} {B : Set b} (S : Setoid {a} {c} A) (T : Setoid {b} {d} B) (f g : A → B) (fWD : WellDefined S T f) (gWD : WellDefined S T g) → ExtensionallyEqual S T f g fWD gWD → ExtensionallyEqual S T g f gWD fWD extensionallyEqualSymmetric S T f g fWD gWD (eq pr) = eq (Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq T)) pr) extensionallyEqualTransitive : {a b c d : _} {A : Set a} {B : Set b} (S : Setoid {a} {c} A) (T : Setoid {b} {d} B) (f g h : A → B) (fWD : WellDefined S T f) (gWD : WellDefined S T g) (hWD : WellDefined S T h) → ExtensionallyEqual S T f g fWD gWD → ExtensionallyEqual S T g h gWD hWD → ExtensionallyEqual S T f h fWD hWD extensionallyEqualTransitive S T f g h fWD gWD hWD (eq pr1) (eq pr2) = eq (Transitive.transitive (Equivalence.transitiveEq (Setoid.eq T)) pr1 pr2) symmetricSetoid : {a b : _} {A : Set a} (S : Setoid {a} {b} A) → Setoid (SymmetryGroupElements S) Setoid._∼_ (symmetricSetoid S) (sym {f} bijF) (sym {g} bijG) = ExtensionallyEqual S S f g (SetoidBijection.wellDefined bijF) (SetoidBijection.wellDefined bijG) Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq (symmetricSetoid S))) {sym {f} bijF} = extensionallyEqualReflexive S S f (SetoidBijection.wellDefined bijF) (SetoidBijection.wellDefined bijF) Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq (symmetricSetoid S))) {sym {f} bijF} {sym {g} bijG} f~g = extensionallyEqualSymmetric S S f g (SetoidBijection.wellDefined bijF) (SetoidBijection.wellDefined bijG) f~g Transitive.transitive (Equivalence.transitiveEq (Setoid.eq (symmetricSetoid S))) {sym {f} bijF} {sym {g} bijG} {sym {h} bijH} f~g g~h = extensionallyEqualTransitive S S f g h (SetoidBijection.wellDefined bijF) (SetoidBijection.wellDefined bijG) (SetoidBijection.wellDefined bijH) f~g g~h symmetricGroupOp : {a b : _} {A : Set a} {S : Setoid {a} {b} A} (f g : SymmetryGroupElements S) → SymmetryGroupElements S symmetricGroupOp (sym {f} bijF) (sym {g} bijG) = sym (setoidBijComp bijG bijF) symmetricGroupInv : {a b : _} {A : Set a} (S : Setoid {a} {b} A) → SymmetryGroupElements S → SymmetryGroupElements S symmetricGroupInv S (sym {f} bijF) with setoidBijectiveImpliesInvertible bijF ... | record { inverse = inverse ; inverseWellDefined = iwd ; isLeft = isLeft ; isRight = isRight } = sym (setoidInvertibleImpliesBijective (record { fWellDefined = iwd ; inverse = f ; inverseWellDefined = SetoidInjection.wellDefined (SetoidBijection.inj bijF) ; isLeft = λ b → isRight b ; isRight = λ b → isLeft b })) symmetricGroupInvIsLeft : {a b : _} {A : Set a} (S : Setoid {a} {b} A) → {x : SymmetryGroupElements S} → Setoid._∼_ (symmetricSetoid S) (symmetricGroupOp (symmetricGroupInv S x) x) (sym setoidIdIsBijective) symmetricGroupInvIsLeft {A = A} S {sym {f = f} fBij} = ExtensionallyEqual.eq ans where ans : {x : A} → Setoid._∼_ S (SetoidInvertible.inverse (setoidBijectiveImpliesInvertible fBij) (f x)) x ans {x} with SetoidSurjection.surjective (SetoidBijection.surj fBij) {f x} ans {x} | a , b = SetoidInjection.injective (SetoidBijection.inj fBij) b symmetricGroupInvIsRight : {a b : _} {A : Set a} (S : Setoid {a} {b} A) → {x : SymmetryGroupElements S} → Setoid._∼_ (symmetricSetoid S) (symmetricGroupOp x (symmetricGroupInv S x)) (sym setoidIdIsBijective) symmetricGroupInvIsRight {A = A} S {sym {f = f} fBij} = ExtensionallyEqual.eq ans where ans : {x : A} → Setoid._∼_ S (f (SetoidInvertible.inverse (setoidBijectiveImpliesInvertible fBij) x)) x ans {x} with SetoidSurjection.surjective (SetoidBijection.surj fBij) {x} ans {x} | a , b = b symmetricGroup : {a b : _} {A : Set a} (S : Setoid {a} {b} A) → Group (symmetricSetoid S) (symmetricGroupOp {A = A}) Group.wellDefined (symmetricGroup A) {sym {m} bijM} {sym {n} bijN} {sym {x} bijX} {sym {y} bijY} (ExtensionallyEqual.eq m~x) (ExtensionallyEqual.eq n~y) = ExtensionallyEqual.eq (transitive m~x (SetoidBijection.wellDefined bijX n~y)) where open Transitive (Equivalence.transitiveEq (Setoid.eq A)) Group.identity (symmetricGroup A) = sym setoidIdIsBijective Group.inverse (symmetricGroup S) = symmetricGroupInv S Group.multAssoc (symmetricGroup A) {sym {f} bijF} {sym {g} bijG} {sym {h} bijH} = ExtensionallyEqual.eq λ {x} → Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq A)) Group.multIdentRight (symmetricGroup A) {sym {f} bijF} = ExtensionallyEqual.eq λ {x} → Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq A)) Group.multIdentLeft (symmetricGroup A) {sym {f} bijF} = ExtensionallyEqual.eq λ {x} → Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq A)) Group.invLeft (symmetricGroup S) {x} = symmetricGroupInvIsLeft S {x} Group.invRight (symmetricGroup S) {x} = symmetricGroupInvIsRight S {x} actionInducesHom : {a b c d : _} {A : Set a} {S : Setoid {a} {c} A} {_+_ : A → A → A} {G : Group S _+_} {B : Set b} {X : Setoid {b} {d} B} → (GroupAction G X) → A → SymmetryGroupElements X actionInducesHom {S = S} {_+_ = _+_} {G = G} {X = X} action f = sym {f = GroupAction.action action f} bij where bij : SetoidBijection X X (GroupAction.action action f) SetoidInjection.wellDefined (SetoidBijection.inj bij) = GroupAction.actionWellDefined2 action SetoidInjection.injective (SetoidBijection.inj bij) {x} {y} fx=fy = Transitive.transitive (Equivalence.transitiveEq (Setoid.eq X)) {x} {GroupAction.action action ((Group.inverse G f) + f) x} (Transitive.transitive (Equivalence.transitiveEq (Setoid.eq X)) (Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq X)) (GroupAction.identityAction action)) (GroupAction.actionWellDefined1 action (Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq S)) (Group.invLeft G)))) (Transitive.transitive (Equivalence.transitiveEq (Setoid.eq X)) {_} {GroupAction.action action (Group.inverse G f + f) y} (Transitive.transitive (Equivalence.transitiveEq (Setoid.eq X)) (GroupAction.associativeAction action) (Transitive.transitive (Equivalence.transitiveEq (Setoid.eq X)) (GroupAction.actionWellDefined2 action fx=fy) (Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq X)) (GroupAction.associativeAction action)))) (Transitive.transitive (Equivalence.transitiveEq (Setoid.eq X)) (GroupAction.actionWellDefined1 action (Group.invLeft G)) (GroupAction.identityAction action))) SetoidSurjection.wellDefined (SetoidBijection.surj bij) = GroupAction.actionWellDefined2 action SetoidSurjection.surjective (SetoidBijection.surj bij) {x} = GroupAction.action action (Group.inverse G f) x , Transitive.transitive (Equivalence.transitiveEq (Setoid.eq X)) (Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq X)) (GroupAction.associativeAction action)) (Transitive.transitive (Equivalence.transitiveEq (Setoid.eq X)) (GroupAction.actionWellDefined1 action (Group.invRight G)) (GroupAction.identityAction action)) actionInducesHomIsHom : {a b c d : _} {A : Set a} {S : Setoid {a} {c} A} {_+_ : A → A → A} {G : Group S _+_} {B : Set b} {X : Setoid {b} {d} B} → (action : GroupAction G X) → GroupHom G (symmetricGroup X) (actionInducesHom action) GroupHom.groupHom (actionInducesHomIsHom {X = X} action) {s1} {s2} = eq associativeAction where open Setoid X renaming (eq to setoidEq) open Transitive (Equivalence.transitiveEq (Setoid.eq X)) open Reflexive (Equivalence.reflexiveEq (Setoid.eq X)) open Symmetric (Equivalence.symmetricEq (Setoid.eq X)) open GroupAction action GroupHom.wellDefined (actionInducesHomIsHom action) {s1} {s2} s1=s2 = eq (actionWellDefined1 s1=s2) where open GroupAction action