{-# OPTIONS --safe --warning=error --without-K --guardedness #-} open import Setoids.Setoids open import Rings.Definition open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Groups.Definition open import Groups.Lemmas open import Fields.Fields open import Sets.EquivalenceRelations open import Sequences open import Setoids.Orders open import Functions open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order module Fields.CauchyCompletion.Ring {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) (charNot2 : Setoid._∼_ S ((Ring.1R R) + (Ring.1R R)) (Ring.0R R) → False) where open Setoid S open SetoidTotalOrder (TotallyOrderedRing.total order) open SetoidPartialOrder pOrder open Equivalence eq open PartiallyOrderedRing pRing open Field F open Group (Ring.additiveGroup R) open import Rings.Orders.Total.Lemmas order open import Fields.CauchyCompletion.Definition order F open import Fields.CauchyCompletion.Multiplication order F charNot2 open import Fields.CauchyCompletion.Addition order F charNot2 open import Fields.CauchyCompletion.Setoid order F charNot2 open import Fields.CauchyCompletion.Group order F charNot2 c*Assoc : {a b c : CauchyCompletion} → Setoid._∼_ cauchyCompletionSetoid (a *C (b *C c)) ((a *C b) *C c) c*Assoc {a} {b} {c} ε 0