{-# OPTIONS --safe --warning=error --without-K --guardedness #-} open import Setoids.Setoids open import Rings.Definition open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Groups.Definition open import Groups.Lemmas open import Fields.Fields open import Sets.EquivalenceRelations open import Sequences open import Setoids.Orders open import Functions open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Numbers.Naturals.Order.Lemmas module Fields.CauchyCompletion.Addition {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) (charNot2 : Setoid._∼_ S ((Ring.1R R) + (Ring.1R R)) (Ring.0R R) → False) where open Setoid S open SetoidTotalOrder (TotallyOrderedRing.total order) open SetoidPartialOrder pOrder open Equivalence eq open PartiallyOrderedRing pRing open Ring R open Group additiveGroup open Field F open import Fields.Lemmas F open import Fields.CauchyCompletion.Definition order F open import Rings.Orders.Partial.Lemmas pRing open import Rings.Orders.Total.Lemmas order lemm : (m : ℕ) (a b : Sequence A) → index (apply _+_ a b) m ≡ (index a m) + (index b m) lemm zero a b = refl lemm (succ m) a b = lemm m (Sequence.tail a) (Sequence.tail b) _+C_ : CauchyCompletion → CauchyCompletion → CauchyCompletion CauchyCompletion.elts (record { elts = a ; converges = convA } +C record { elts = b ; converges = convB }) = apply _+_ a b CauchyCompletion.converges (record { elts = a ; converges = convA } +C record { elts = b ; converges = convB }) ε 0