{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Groups open import Groups.Lemmas open import Groups.Definition open import Numbers.Naturals.Naturals open import Setoids.Setoids open import Functions open import Rings.Definition open import Rings.Lemmas open import Sets.EquivalenceRelations open import Fields.Fields open import Rings.Ideals.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Rings.Ideals.Prime.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} {c : _} {pred : A → Set c} (i : Ideal R pred) where record PrimeIdeal : Set (a ⊔ c) where field isPrime : {a b : A} → pred (a * b) → ((pred a) → False) → pred b notContained : A notContainedIsNotContained : (pred notContained) → False