{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Groups open import Groups.Lemmas open import Groups.Definition open import Setoids.Setoids open import Rings.Definition open import Rings.Lemmas open import Sets.EquivalenceRelations open import Rings.Ideals.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Rings.Ideals.Maximal.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} {c : _} {pred : A → Set c} (i : Ideal R pred) where record MaximalIdeal {d : _} : Set (a ⊔ b ⊔ c ⊔ lsuc d) where field notContained : A notContainedIsNotContained : (pred notContained) → False isMaximal : {bigger : A → Set d} → Ideal R bigger → ({a : A} → pred a → bigger a) → (Sg A (λ a → bigger a && (pred a → False))) → ({a : A} → bigger a)