{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Groups open import Groups.Definition open import Rings.Definition open import Rings.Orders.Definition open import Rings.Lemmas open import Setoids.Setoids open import Setoids.Orders open import Orders open import Rings.IntegralDomains open import Functions open import Sets.EquivalenceRelations open import Fields.Fields open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Fields.Orders.Definition {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (F : Field R) where open Ring R open import Fields.Lemmas F record OrderedField {p} {_<_ : Rel {_} {p} A} {pOrder : SetoidPartialOrder S _<_} (order : SetoidTotalOrder pOrder) : Set (lsuc (m ⊔ n ⊔ p)) where field oRing : OrderedRing R order