{-# OPTIONS --safe --warning=error --without-K #-} open import Groups.Definition open import Functions open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae open import Setoids.Subset open import Setoids.Setoids open import Setoids.Orders open import Fields.Fields open import Rings.Orders.Total.Lemmas open import Rings.Orders.Partial.Definition open import Rings.Definition open import Fields.Orders.LeastUpperBounds.Definition open import Fields.Orders.Total.Definition open import Sets.EquivalenceRelations module Numbers.ClassicalReals.RealField.Lemmas {a b c : _} {A : Set a} {S : Setoid {_} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} (F : Field R) {_<_ : Rel {_} {c} A} {pOrder : SetoidPartialOrder S _<_} (pOrderedRing : PartiallyOrderedRing R pOrder) {orderNontrivialX orderNontrivialY : A} (orderNontrivial : orderNontrivialX < orderNontrivialY) where open Ring R open Group additiveGroup open Setoid S open Equivalence eq open SetoidPartialOrder pOrder open import Rings.Orders.Partial.Lemmas pOrderedRing open PartiallyOrderedRing pOrderedRing IsInterval : {d : _} {pred : A → Set d} (subset : subset S pred) → Set (a ⊔ c ⊔ d) IsInterval {pred = pred} subset = (x y : A) → (x