{-# OPTIONS --safe --warning=error --without-K #-} open import Functions open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae open import Setoids.Subset open import Setoids.Setoids open import Setoids.Orders.Partial.Definition open import Fields.Fields open import Rings.Orders.Total.Definition open import Rings.Orders.Total.Lemmas open import Rings.Orders.Partial.Definition open import Rings.Definition open import Fields.Orders.LeastUpperBounds.Definition open import Fields.Orders.Total.Definition module Numbers.ClassicalReals.RealField where record RealField : Agda.Primitive.Setω where field a b c : _ A : Set a S : Setoid {_} {b} A _+_ : A → A → A _*_ : A → A → A R : Ring S _+_ _*_ F : Field R _<_ : Rel {_} {c} A pOrder : SetoidPartialOrder S _<_ pOrderedRing : PartiallyOrderedRing R pOrder orderedRing : TotallyOrderedRing pOrderedRing lub : {d : _} → {pred : A → Set d} → (sub : subset S pred) → (nonempty : Sg A pred) → (boundedAbove : Sg A (UpperBound pOrder sub)) → Sg A (LeastUpperBound pOrder sub) open Setoid S open Field F charNot2 : (Ring.1R R + Ring.1R R) ∼ Ring.0R R → False charNot2 = orderedImpliesCharNot2 orderedRing nontrivial oField : TotallyOrderedField F pOrderedRing oField = record { oRing = orderedRing }