{-# OPTIONS --safe --warning=error --without-K --guardedness #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae open import Setoids.Subset open import Setoids.Setoids open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Sets.EquivalenceRelations open import Rings.Orders.Total.Definition open import Rings.Orders.Partial.Definition open import Rings.Definition open import Fields.Fields open import Groups.Definition open import Sequences open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Semirings.Definition open import Functions open import Fields.Orders.Total.Definition open import Numbers.Primes.PrimeNumbers module Fields.Orders.Limits.Lemmas {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {_} {c} A} {R : Ring S _+_ _*_} {pOrder : SetoidPartialOrder S _<_} {F : Field R} {pRing : PartiallyOrderedRing R pOrder} (oF : TotallyOrderedField F pRing) where open Ring R open TotallyOrderedField oF open TotallyOrderedRing oRing open PartiallyOrderedRing pRing open import Rings.Orders.Total.Lemmas oRing open import Rings.Orders.Total.AbsoluteValue oRing open import Rings.Orders.Partial.Lemmas pRing open SetoidTotalOrder total open SetoidPartialOrder pOrder open Group additiveGroup open import Groups.Lemmas additiveGroup open Setoid S open Equivalence eq open Field F open import Fields.CauchyCompletion.Definition (TotallyOrderedField.oRing oF) F open import Fields.Orders.Limits.Definition oF open import Fields.Lemmas F open import Fields.Orders.Total.Lemmas oF open import Rings.Characteristic R open import Rings.InitialRing R open import Rings.Orders.Total.Cauchy oRing private 2!=3 : 2 ≡ 3 → False 2!=3 () convergentSequenceCauchy : (nontrivial : 0R ∼ 1R → False) → {a : Sequence A} → {r : A} → a ~> r → cauchy a convergentSequenceCauchy _ {a} {r} a->r e 0r e/2 (halvePositive' prE/2 0