{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Definition open import Rings.Definition open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Rings.Orders.Total.Lemmas open import Rings.IntegralDomains.Definition open import Functions.Definition open import Setoids.Setoids open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Sets.EquivalenceRelations module Fields.FieldOfFractions.Order {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} {_<_ : Rel {_} {c} A} {pOrder : SetoidPartialOrder S _<_} {pRing : PartiallyOrderedRing R pOrder} (I : IntegralDomain R) (order : TotallyOrderedRing pRing) where open import Fields.FieldOfFractions.Setoid I open import Fields.FieldOfFractions.Ring I open import Fields.FieldOfFractions.Addition I open import Fields.FieldOfFractions.Multiplication I open import Fields.FieldOfFractions.Lemmas I open Ring R open Setoid S open Equivalence eq open SetoidTotalOrder (TotallyOrderedRing.total order) open import Rings.Orders.Partial.Lemmas open PartiallyOrderedRing pRing fieldOfFractionsComparison : Rel fieldOfFractionsSet fieldOfFractionsComparison (record { num = numA ; denom = denomA ; denomNonzero = denomA!=0 }) (record { num = numB ; denom = denomB ; denomNonzero = denomB!=0 }) with (totality (Ring.0R R) denomA ,, totality (Ring.0R R) denomB) fieldOfFractionsComparison (record { num = numA ; denom = denomA ; denomNonzero = denomA!=0 }) (record { num = numB ; denom = denomB ; denomNonzero = denomB!=0 }) | inl (inl 0