{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Groups open import Groups.Lemmas open import Groups.Definition open import Numbers.Naturals.Naturals open import Setoids.Orders open import Setoids.Setoids open import Functions open import Sets.EquivalenceRelations open import Rings.Definition open import Rings.Orders.Total.Definition open import Rings.Orders.Partial.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Rings.Orders.Total.Lemmas {n m p : _} {A : Set n} {S : Setoid {n} {m} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} {_<_ : Rel {_} {p} A} {pOrder : SetoidPartialOrder S _<_} {pOrderRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pOrderRing) where open Ring R open Group additiveGroup open Setoid S open SetoidPartialOrder pOrder open TotallyOrderedRing order open SetoidTotalOrder total open PartiallyOrderedRing pOrderRing open import Rings.Lemmas R open import Rings.Orders.Partial.Lemmas pOrderRing abs : A → A abs a with totality 0R a abs a | inl (inl 0