{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Lemmas open import Groups.Definition open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Setoids.Setoids open import Functions.Definition open import Sets.EquivalenceRelations open import Rings.Definition open import Rings.Orders.Total.Definition open import Rings.Orders.Partial.Definition open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Orders.Total.Definition open import Rings.IntegralDomains.Definition module Rings.Orders.Total.Lemmas {n m p : _} {A : Set n} {S : Setoid {n} {m} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} {_<_ : Rel {_} {p} A} {pOrder : SetoidPartialOrder S _<_} {pOrderRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pOrderRing) where open Ring R open Group additiveGroup open Setoid S open SetoidPartialOrder pOrder open TotallyOrderedRing order open SetoidTotalOrder total open PartiallyOrderedRing pOrderRing open import Rings.Lemmas R open import Rings.Orders.Partial.Lemmas pOrderRing abstract lemm2 : (a : A) → a < 0G → 0G < inverse a lemm2 a a<0 with totality 0R (inverse a) lemm2 a a<0 | inl (inl 0<-a) = 0<-a lemm2 a a<0 | inl (inr -a<0) = exFalso (irreflexive {0G} (SetoidPartialOrder.