{-# OPTIONS --safe --warning=error #-} open import LogicalFormulae open import Groups.Groups open import Groups.GroupDefinition open import Groups.GroupsLemmas open import Rings.RingDefinition open import Rings.RingLemmas open import Rings.IntegralDomains open import Fields.Fields open import Functions open import Setoids.Setoids open import Setoids.Orders open import Fields.FieldOfFractions open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Fields.FieldOfFractionsOrder where fieldOfFractionsComparison : {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} {_<_ : Rel {_} {c} A} {pOrder : SetoidPartialOrder S _<_} {tOrder : SetoidTotalOrder pOrder} (I : IntegralDomain R) → (order : OrderedRing R tOrder) → Rel (fieldOfFractionsSet I) fieldOfFractionsComparison {_*_ = _*_} {R} {_<_} {tOrder = tOrder} i oring (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) with SetoidTotalOrder.totality tOrder (Ring.0R R) denomA fieldOfFractionsComparison {_*_ = _*_} {R} {_<_} {tOrder = tOrder} i oring (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0