{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Groups open import Groups.Homomorphisms.Definition open import Groups.Definition open import Numbers.Naturals.Definition open import Numbers.Naturals.Order open import Setoids.Orders open import Setoids.Setoids open import Functions open import Sets.EquivalenceRelations open import Rings.Definition open import Rings.Homomorphisms.Definition open import Groups.Homomorphisms.Lemmas open import Rings.IntegralDomains.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Rings.EuclideanDomains.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where open Setoid S open Ring R record DivisionAlgorithmResult {norm : {a : A} → ((a ∼ 0R) → False) → ℕ} {x y : A} (x!=0 : (x ∼ 0R) → False) (y!=0 : (y ∼ 0R) → False) : Set (a ⊔ b) where field quotient : A rem : A remSmall : (rem ∼ 0R) || Sg ((rem ∼ 0R) → False) (λ rem!=0 → (norm rem!=0)