{-# OPTIONS --warning=error --safe #-}
open import LogicalFormulae
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Numbers.Naturals.Order.Lemmas
open import Numbers.Naturals.Order.WellFounded
open import Numbers.Primes.PrimeNumbers
open import WellFoundedInduction
open import Semirings.Definition
open import Orders
module Numbers.Primes.IntegerFactorisation where
open TotalOrder ℕTotalOrder
-- Represent a factorisation into increasing factors
-- Note that 0 cannot be expressed this way.
record factorisationNonunit (minFactor : ℕ) (a : ℕ) : Set where
inductive
field
11 = p>1 ; pr = pr } = record {11 ; firstFactor = p ; firstFactorNontrivial = p>1 ; firstFactorBiggerMin = inl p>1 ; firstFactorDivision = record { quot = 1 ; rem = 0 ; pr = lemma p ; remIsSmall = zeroIsValidRem p ; quotSmall = inl (TotalOrder.1) } ; firstFactorDivides = refl ; firstFactorPrime = record { p>1 = p>1 ; pr = pr} ; otherFactors = inl record { fst = refl ; snd = refl } ; otherFactorsNumber = 0 }
where
proof : (s : ℕ) → s *N 1 +N 0 ≡ s
proof s rewrite Semiring.sumZeroRight ℕSemiring (s *N 1) | multiplicationNIsCommutative s 1 | Semiring.sumZeroRight ℕSemiring s = refl
twoAsFact : factorisationNonunit 2 2
factorisationNonunit.11 firstFactorPrime ; firstFactorBiggerMin = iSmallEnough ; firstFactorDivision = firstFactorDivision ; firstFactorDivides = firstFactorDivides ; firstFactorPrime = firstFactorPrime ; otherFactors = otherFactors }
-- Get the smallest prime factor of the number
everyNumberHasAPrimeFactor : {a : ℕ} → (1 1 = n>1 ; divisor = divisor ; dividesN = dividesN ; divisorLessN = divisorLessN ; divisorNot1 = divisorNot1 ; divisorPrime = divisorPrime ; noSmallerDivisors = noSmallerDivisors } = ( divisor , record { fst = record { fst = dividesN ; snd = divisorNot1 } ; snd = record { fst = divisorPrime ; snd = noSmallerDivisors } } )
everyNumberHasAPrimeFactor {a} 11 primeA ; firstFactorBiggerMin = inl (Prime.p>1 primeA) ; firstFactorDivision = record { quot = 1 ; rem = 0 ; pr = ssxDivA ; remIsSmall = r ; quotSmall = inl (TotalOrder.1 = Prime.p>1 primeA ; pr = Prime.pr primeA } ; otherFactors = inl record { fst = refl ; snd = refl } ; otherFactorsNumber = 0 }
factorIntegerLemma (succ (succ x)) indHyp | a , record { fst = record { fst = divides record {quot = succ (succ qu) ; rem = .0 ; pr = ssxDivA ; remIsSmall = remSmall } refl ; snd = 11 primeA ; firstFactorBiggerMin = inl (Prime.p>1 primeA) ; firstFactorDivision = record { quot = succ (succ qu) ; rem = 0 ; pr = ssxDivA ; remIsSmall = remSmall ; quotSmall = inl (TotalOrder.1 = Prime.p>1 primeA ; pr = Prime.pr primeA } ; otherFactors = inr record {fst = succPreservesInequality (succIsPositive qu) ; snd = factNonunit} ; otherFactorsNumber = succ (factorisationNonunit.otherFactorsNumber indHypRes') }
where
indHypRes : ((succ (succ qu))