{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Groups open import Groups.Definition open import Groups.Lemmas open import Rings.Definition open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Rings.Orders.Total.Lemmas open import Rings.Lemmas open import Rings.IntegralDomains.Definition open import Fields.Fields open import Functions open import Setoids.Setoids open import Setoids.Orders open import Sets.EquivalenceRelations open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Fields.FieldOfFractions.Order {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} {_<_ : Rel {_} {c} A} {pOrder : SetoidPartialOrder S _<_} {pRing : PartiallyOrderedRing R pOrder} (I : IntegralDomain R) (order : TotallyOrderedRing pRing) where open import Fields.FieldOfFractions.Setoid I open import Fields.FieldOfFractions.Ring I open SetoidTotalOrder (TotallyOrderedRing.total order) open import Rings.Orders.Partial.Lemmas open PartiallyOrderedRing pRing fieldOfFractionsComparison : Rel fieldOfFractionsSet fieldOfFractionsComparison (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) with totality (Ring.0R R) denomA fieldOfFractionsComparison (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0