{-# OPTIONS --safe --warning=error --without-K #-} open import Groups.Groups open import Groups.Definition open import Orders open import Numbers.Integers.Integers open import Setoids.Setoids open import LogicalFormulae open import Sets.FinSet open import Functions open import Sets.EquivalenceRelations open import Numbers.Naturals.Naturals open import Groups.Homomorphisms.Definition open import Groups.Homomorphisms.Lemmas open import Groups.Isomorphisms.Definition open import Groups.Subgroups.Definition open import Groups.Lemmas open import Groups.Abelian.Definition open import Groups.QuotientGroup.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Groups.Subgroups.Normal.Definition where record NormalSubgroup {a} {b} {c} {d} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) (H : Group T _·B_) {f : B → A} (hom : GroupHom H G f) : Set (a ⊔ b ⊔ c ⊔ d) where open Setoid S field subgroup : Subgroup G H hom normal : {g : A} {h : B} → Sg B (λ fromH → (g ·A (f h)) ·A (Group.inverse G g) ∼ f fromH)